"April/2018 - Entwicklung eines Messverfahrens für die Lebensdauer von Minoritätsladungsträgern in Silizium- und Germaniumkristallen"

Ein neu entwickeltes Auswertungsverfahren gestattet es die Lebensdauer von Minoritätsladungsträgern abzubilden. Die Möglichkeit gleichzeitig Defekte, Widerstandsinhomogenitäten und Trägerlebensdauerverteilung zu visualisieren, ist der Hauptvorteil des verbesserten kombinierten LPS & SPL-Systems. Damit lassen sich Unsicherheiten bei der Dateninterpretation vermeiden, die bei separaten Messungen auftreten können.

Elektrisch aktive Defekte in Silizium- oder Germaniumkristallen können durch Lateral Photovoltage Scanning (LPS) oder Scanning Photoluminescence (SPL) sichtbar gemacht werden. Beide Methoden wurden am IKZ konzipiert, weiterentwickelt und zur Charakterisierung routinemäßig eingesetzt, um Defekte, wie Korngrenzen, Versetzungen oder inhomogene Fremdstoffverteilungen (Striations) abzubilden.

Struktur- und Verunreinigungsdefekte verstärken die Ladungsträgerrekombination in Halbleitern. Wenn ein angeregtes Elektron-Loch-Paar an einen solchen Defekt rekombiniert, d.h. sich gegenseitig aufhebt, wird Energie, in Form von Licht oder Wärme freigesetzt. Je länger die Ladungsträger von der Rekombination verschont bleiben, desto länger ist ihre "Lebensdauer" die ein wichtiger Qualitätsparameter ist.

Das neue System, ausgestattet mit zwei Festkörperlasern mit variabler Leistung, deren Laserstrahlen zusätzlich fokussiert werden können, ermöglicht es Rekombinationszentren und ihre Auswirkungen auf die Lebensdauer ortsaufgelöst über die Probenfläche zu ermitteln.
Aufgabe des Messplatzes ist es, mit Hilfe der gleichzeitig gemessenen LPS- und SPL-Signale, Rekombinationszentren, die für die Qualität des Halbleitermaterials mit entscheidend sind, im 2D-Scan sichtbar zu machen und quantitativ zu vermessen. Dies ist für einkristallines und multikristallines Silizium interessant sowie für Germanium- und Silizium-Germanium-Mischkristalle.

Da sich Rekombinationszentren generell nachteilig auf die Qualität der in der Photovoltaik oder Elektronik eingesetzten Bauelemente auswirken, ist die Möglichkeit Rekombinationszentren zu visualisieren und ihren Ursprung zu verstehen ein wichtiger Bestandteil der Forschung im Bereich der Halbleiterkristallzüchtung.

 

Die LPS / SPL Forschungsarbeiten werden am IKZ in enger Zusammenarbeit mit der Firma LPCon durchgeführt:
https://www.lpcon.com/


zurück zur Startseite

"März/18 IKZ-News: Ein neuer Weg zur Züchtung von Perowskit-Kristallen"

Die Kristallzüchtung mittels Schmelzlösungsmittel gilt beim Perowskit-Prototyp CaTiO3 als die Methode der Wahl. Am IKZ konnte eine Mischung aus Calciumfluorid (CaF2) und Titan(IV)-oxid (TiO2) als vorteilhaftes Lösungsmittel für diese Kristalle identifiziert werden.

Calciumtitanat (CaTiO3) kommt in der Natur als Mineral vor. Eine Züchtung direkt aus der Schmelze ist allerdings nicht möglich, da die Phasenumwandlung bei 1625 K zu starker Zwillingsbildung und damit Schädigung der Kristalle führt. Durch den Zusatz von sogenannte Schmelzlösungsmittel kann dieses Problem umgangen werden. Hierbei handelt es sich um Substanzen mit relativ niedrigem Schmelzpunkt, welche die zu kristallisierende Substanz in flüssiger Phase lösen. Beim Abkühlen scheiden die Schmelzlösungsmittel die zu kristallisierende Substanz wieder aus.

Die Suche nach geeigneten Schmelzlösungsmitteln ist allerdings oftmals eine nahezu alchemistische Prozedur. Für
CaTiO3 wurden in der Literatur u.a. Kaliumfluorid und Blei(II)-fluorid beschrieben. Beide haben jedoch den Nachteil, dass nur sehr geringe Anteile CaTiO3 (etwa 1:12) in ihnen gelöst werden können. Darüber hinaus führen unerwünschte chemische Reaktionen zwischen Lösungsmittel und CaTiO3 zur Kontamination desselben.

Im Rahmen einer Masterarbeit wurde am IKZ eine Mischung aus den bleifreien Substanzen Calciumfluorid (CaF2) und
Titan(IV)-oxid (TiO2) als vorteilhafteres Lösungsmittel für CaTiO3 identifiziert. Aus einer Mischung dieser Substanzen im molaren Verhältnis 3:1:1 (grüner Punkt in Abbildung) kristallisiert CaTiO3 unterhalb der kritischen Phasenumwandlung in zwar derzeit noch kleinen (ca. 2,5 mm Kantenlängen) aber hochwertigen Kristallen. Die Ergebnisse wurden auf der Grundlage umfangreicher thermoanalytischer Messungen und eines darauf basierenden thermodynamischen Modells des ternären Phasendiagramms gewonnen. Der Anteil an gelöstem CaTiO3 konnte auf 1:4 verbessert werden und auch kommt es zu keinen nachweisbaren unerwünschten chemischen Reaktionen und somit zu Kontaminationen.

 

Wenngleich reines CaTiO3 nur geringe technische Relevanz besitzt, so sind doch die Kenntnis und das Verständnis seiner Eigenschaften von fundamentaler Bedeutung. Eine Reihe wichtiger Ferroelektrika (Bsp. Bariumtitanat, (Kalium, Natrium)-Niobat etc.) und andere Funktionsmaterialien wie Substrate für die Oxidelektronik (Bsp. Strontiumtitanat, Seltenerd-Scandate etc.) kristallisieren in der Perowskit oder verwandten Kristallstrukturen. Für Grundlagenuntersuchungen ist die Bereitstellung von CaTiO3 Einkristallen hoher Qualität als geeignete Modellsysteme zur Beantwortung fundamentaler Fragestellungen demnach essentiell.


Der Artikel ist publiziert im Journal of Crystal Growth.

https://doi.org/10.1016/j.jcrysgro.2018.01.025


zurück zur Startseite

"Januar/18 IKZ-News: Grundlegende Limitierung im Schlüsselmaterial für LED aufgedeckt"

Internationale Forscher haben den Mechanismus aufgezeigt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt — dem Schlüsselmaterial für blaue Leuchtdioden (LED).

 

Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu erreichen. Der Grund dafür war bisher unklar: Ist es ein Problem, die richtigen Wachstumsbedingungen zu finden oder eher ein nicht zu überwindender fundamentaler Effekt? Nun hat ein internationales Team aus Deutschland, Polen und China neues Licht auf diese Frage geworfen und den Mechanismus aufgezeigt, der für diese Begrenzung verantwortlich ist.

 

In ihrer Arbeit versuchten die Wissenschaftler, den Indium-Gehalt zu maximieren, indem sie einzelne atomare Schichten von InN auf GaN züchteten. Unabhängig von den Wachstumsbedingungen haben die Indium-Konzentrationen jedoch nie 25% - 30% überschritten - ein deutliches Zeichen für einen grundlegend begrenzten Mechanismus. Die Forscher verwendeten hochentwickelte Charakterisierungsmethoden, wie das Transmissionselektronenmikroskop mit atomarer Auflösung (TEM) und die In-situ-Reflexions-Hochenergie-Elektronenbeugung (RHEED), und entdeckten, dass, sobald der Indium-Gehalt etwa 25% erreicht, die Atome innerhalb der (In, Ga)N-Monoschicht in einem regelmäßigen Muster angeordnet sind - eine einzelne Indium-Atomreihe alterniert mit zwei Atomreihen von Gallium-Atomen. Umfassende theoretische Berechnungen ergaben, dass die atomare Anordnung durch eine bestimmte Oberflächenrekonstruktion induziert wird: Indium-Atome sind mit vier benachbarten Atomen verbunden, statt wie erwartet mit drei. Dadurch entstehen stärkere Bindungen zwischen Indium- und Stickstoffatomen, die es einerseits ermöglichen, während des Wachstums höhere Temperaturen zu nutzen und andererseits dem Material eine bessere strukturelle Qualität zu verleihen. Auf der anderen Seite begrenzt die geordnete atomare Anordnung den Indium-Gehalt auf 25%, welcher unter realistischen Wachstumsbedingungen nicht zu überwinden ist.

 

Die Arbeit ist das Ergebnis einer Zusammenarbeit zwischen dem Leibniz-Institut für Kristallzüchtung (Berlin, Deutschland), dem Max-Planck-Institut für Eisenforschung (Düsseldorf, Deutschland), dem Paul-Drude-Institut für Festkörperelektronik (Berlin, Deutschland), dem Institut für Hochdruckphysik (Warschau, Polen) und dem State Key Laboratory of Artificial Microstructure and Mesoscopic Physics (Peking, China).

Zur vollständigen Pressemitteilung.

Der Artikel ist erschienen in:
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.011601


zurück zur Startseite

Partnerlogo 1

Partnerlogo 2

Partnerlogo 3