Pressemitteilungen

31.01.2018: Thomas Schröder als neuer Direktor des Leibniz-Instituts für Kristallzüchtung berufen  

Zum 1. Februar 2018 übernimmt Prof. Dr. Thomas Schröder die Leitung des Leibniz-Instituts für Kristallzüchtung (IKZ) in Berlin-Adlershof. Damit verbunden ist die Professur „Kristallwachstum“ an der Humboldt-Universität zu Berlin. Seit 2013 hat Prof. Dr. Günther Tränkle, Direktor des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH), die kommissarische Leitung des Instituts übernommen, unter dessen Führung sich das IKZ zu einem führenden Zentrum für Kristallzüchtung in Europa weiterentwickeln konnte.

Thomas Schröder hält seit 2012 eine Professur für Halbleitermaterialien an der Brandenburgischen Technischen Universität (BTU) Cottbus-Senftenberg und ist seit 2009 Leiter der Abteilung  Materialforschung am Leibniz-Institut für innovative Mikroelektronik (IHP) in Frankfurt (Oder). Hier betreibt er mit seinem Team eine moderne Materialforschung im Bereich der „More than Moore“ Silizium Mikroelektronik. Als studierter Chemiker und Physiker erlangte Thomas Schröder seine Promotion im Bereich der physikalischen Chemie von Dielektrika an der Humboldt-Universität sowie dem Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin.

Das Leibniz-Institut für Kristallzüchtung erforscht die wissenschaftlichen und technologischen Fragestellungen des Kristallwachstums und der Kristallzüchtung. Dies reicht von der Grundlagenforschung bis hin zu industrienaher Technologieentwicklung. Die am Institut entwickelten Materialien bilden die Basis für moderne technische Anwendungen, die unter anderem in der Mikro-, Opto- und Leistungselektronik, der Photovoltaik, in Optik und Lasertechnik oder der Sensorik zum Einsatz kommen. Zusätzlich erfüllt das Institut eine überregionale Servicefunktion, zu der besonders die Bereitstellung spezieller Kristalle für die Forschung, die Charakterisierung von kristallinen Materialien oder die Entwicklung von Technologien für Forschung und Industrie zählen.

 

22.01.2018: Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf

Zum ersten Mal hat eine internationale Forschungsgruppe den Kernmechanismus aufgedeckt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt - dem Schlüsselmaterial für blaue Leuchtdioden (LED). Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu erreichen. Der Grund dafür war bisher unklar: Ist es ein Problem, die richtigen Wachstumsbedingungen zu finden oder eher ein nicht zu überwindender fundamentaler Effekt? Nun hat ein internationales Team aus Deutschland, Polen und China neues Licht auf diese Frage geworfen und den Mechanismus aufgezeigt, der für diese Begrenzung verantwortlich ist.

In ihrer Arbeit versuchten die Wissenschaftler, den Indium-Gehalt zu maximieren, indem sie einzelne atomare Schichten von InN auf GaN züchteten. Unabhängig von den Wachstumsbedingungen haben die Indium-Konzentrationen jedoch nie 25% - 30% überschritten - ein deutliches Zeichen für einen grundlegend begrenzten Mechanismus. Die Forscher verwendeten hochentwickelte Charakterisierungsmethoden, wie das Transmissionselektronenmikroskop mit atomarer Auflösung (TEM) und die In-situ-Reflexions-Hochenergie-Elektronenbeugung (RHEED), und entdeckten, dass, sobald der Indium-Gehalt etwa 25% erreicht, die Atome innerhalb der (In, Ga)N-Monoschicht in einem regelmäßigen Muster angeordnet sind - eine einzelne Indium-Atomreihe alterniert mit zwei Atomreihen von Gallium-Atomen. Umfassende theoretische Berechnungen ergaben, dass die atomare Anordnung durch eine bestimmte Oberflächenrekonstruktion induziert wird: Indium-Atome sind mit vier benachbarten Atomen verbunden, statt wie erwartet mit drei. Dadurch entstehen stärkere Bindungen zwischen Indium- und Stickstoffatomen, die es einerseits ermöglichen, während des Wachstums höhere Temperaturen zu nutzen und andererseits dem Material eine bessere strukturelle Qualität zu verleihen. Auf der anderen Seite begrenzt die geordnete atomare Anordnung den Indium-Gehalt auf 25%, welcher unter realistischen Wachstumsbedingungen nicht zu überwinden ist.

“Offensichtlich behindert ein technologischer Engpass sämtliche Versuche, die Emission vom grünen in den gelben und roten Bereich der Spektren zu verlagern“, - erklärt Dr. Tobias Schulz, Leibniz-Institut für Kristallzüchtung, Berlin: "Zum Beispiel das Wachstum von InGaN-Filmen auf qualitativ hochwertigen InGaN-Pseudosubstraten, welche die Verspannung in der Schicht reduzieren würden.“

Die regelmäßige Anordnung der Atome kann jedoch helfen, bekannte Grenzen des InGaN-Materialsystems zu überwinden: Lokalisation von Ladungsträgern aufgrund von Schwankungen in der chemischen Zusammensetzung in der Schicht. Die Züchtung von fest angeordneten (In, Ga)N-Legierungen mit einer stabilen Zusammensetzung bei hohen Temperaturen kann somit die optischen Eigenschaften von Bauelementen verbessern.

Die Arbeit ist das Ergebnis einer Zusammenarbeit zwischen dem Leibniz-Institut für Kristallzüchtung (Berlin, Deutschland), dem Max-Planck-Institut für Eisenforschung (Düsseldorf, Deutschland), dem Paul-Drude-Institut für Festkörperelektronik (Berlin, Deutschland), dem Institut für Hochdruckphysik (Warschau, Polen) und dem State Key Laboratory of Artificial Microstructure and Mesoscopic Physics (Peking, China).

Der Artikel ist erschienen in:

https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.011601

27.03.2017: Berliner Start-up GOLARES erhält Leibniz-Gründerpreis 2017

Die Berliner Ausgründung GOLARES vom Leibniz-Institut für Kristallzüchtung (IKZ) in Adlershof erhält den Gründerpreis der Leibniz-Gemeinschaft 2017. Die Auszeichnung ist mit einem Preisgeld von 50.000 Euro dotiert, das für die weitere Entwicklung des Unternehmenskonzepts eingesetzt werden kann.

GOLARES hat ein Verfahren zum hochpräzisen und homogenen Beschichten sowie zum effizienten Strukturieren von Bauelementen entwickelt, die zum Beispiel in Lasern oder Sensoren vieler Hightech-Produkte zum Einsatz kommen. Mit einer neuentwickelten Plasmaquelle ist GOLARS in der Lage, dünne Schichten aus Titan- und Aluminiumnitrid herzustellen, die sich durch besondere Härte, Wärmeleitfähigkeit und chemische Beständigkeit auszeichnen. Die so produzierten Wafer bilden die Grundlage für Mikrochips, die in verschiedenen elektronischen und opto-elektronischen Bauelementen verwendet werden.

GOLARES zielt besonders auf innovative kleine und mittelständische Unternehmen, die Plasma-Prozessierung für Kleinserien, Vorversuche und Prototypen, aber auch entsprechende Infrastrukturen nicht selbst vorhalten können. Die dafür eingesetzte Technik verspricht ihnen robustere Produkte mit einer höheren Lebensdauer.

Hinter GOLARES stehen mit Sebastian Golka, einem promovierten Elektroingenieur, und Michael Arens, einem promovierten Physiker, zwei Spezialisten für Plasmaprozesstechnik. Michael Arens bringt dazu Erfahrungen in Vertrieb und Betriebswirtschaft mit.

GOLARES wurde zuletzt mit einem EXIT-Gründerstipendium des Bundeswirtschaftsministeriums für Existenzgründungen aus der Wissenschaft gefördert und vom Gründungsservice Leibniz-Transfer der Leibniz-Gemeinschaft unterstützt. Seit Juni 2016 hat GOLARES als GmbH den operativen Betrieb aufgenommen.

Für den Leibniz-Gründerpreis 2017 waren neben GOLARES drei weitere, hervorragende Gründungsprojekte aus Leibniz-Instituten nominiert, darunter auch MSim – Microelectronic Simulations vom Weierstraß-Institut für Angewandte Analysis und Stochastik in Berlin (WIAS), das moderne und hochwertige Simulations-Produkte für Hersteller von Halbleiter-Bauelementen anbietet. IKZ und WIAS gehören zum Forschungsverbund Berlin e.V., der in diesem Jahr sein 25-jähriges Bestehen feiert.

Mit dem Gründerpreis der Leibniz-Gemeinschaft werden Ausgründungsvorhaben aus Leibniz-Instituten in der Vorbereitungs- bzw. Start-up-Phase unterstützt. Das Preisgeld ist zweckgebunden für Beratungsleistungen bei der Überprüfung und praktischen Umsetzung der Unternehmenskonzepte. Dabei geht es insbesondere um Herausforderungen wie Markteintritt, Einwerbung einer Finanzierung oder Entwicklung von Marketing- und Vertriebskonzepten. Die Begutachtung der eingereichten Vorschläge erfolgte durch die Preis-Jury der Leibniz-Gemeinschaft, die sich aus leitenden Wissenschaftlern von Leibniz-Instituten und Personen des öffentlichen Lebens zusammensetzt, darunter ausgewiesene Experten für Ausgründungen und Wissenstransfer.

Weitere Informationen zum Leibniz-Gründerpreis unter:
www.leibniz-gemeinschaft.de/ueber-uns/auszeichnungen/leibniz-gruenderpreis/

Partnerlogo 1

Partnerlogo 2

Partnerlogo 3