Working Group Gallium Arsenide - Summary

Gallium arsenide is beside silicon the most commonly used semiconductor material and is applied e.g. in WiFi communication, as well as in microwave and high-frequency technology.  Due to the growing market for mobile telecommunication devices, the GaAs-component market continues to expand. The research activities of the Gallium Arsenide Group focus in particular on increasing the efficiency of the VGF GaAs growth process.  To address this technological and scientific challenge different strategies are used, for example, simultaneous crystallization in multiple crucibles and increasing the rate of crystallization.  Defined control of flow in the melt is crucial to increasing a process efficiency.  The use of external fields is an avenue to selectively influence the flow, as has been successfully demonstrated at IKZ.  Currently, two of our VGF reactors are equipped with a KRISTMAG® heater-magnet module (HMM) allowing simultaneous generation of heat and traveling magnetic field (TMF). The design and process development are continuously supported by numerical simulations.  It should be noted, that know-how obtained in this research has the potential for application for others materials, in particular, other III-V compounds.

The KRISTMAG® project has been awarded the Berlin Brandenburg Innovation Award.

Key Publications

C. Frank-Rotsch, N. Dropka; A. Glacki, U. Juda
VGF Growth of GaAs Utilizing Heater-Magnet Module.
J CRYST GROWTH 401 (2014) 702 - 707
doi:10.1016/j.jcrysgro.2013.12.063

A. Glacki, N. Dropka, C. Frank-Rotsch, U. Juda, M. Naumann
Characterization of 4 inch VGF-GaAs Single Crystals Grown in a Heater-Magnet Module.
J CRYST GROWTH 397 (2014) 6 - 12
doi:10.1016/j.jcrysgro.2014.03.050

N. Dropka, Ch. Frank-Rotsch
Enhanced VGF-GaAs Growth Using Pulsed Unidirectional TMF
J CRYST GROWTH 386 (2014) 146 - 153
doi:10.1016/j.jcrysgro.2013.09.027

Working Group Gallium Arsenide - Methods

  • Vertical Gradient Freeze (VGF)- single crystal growth of GaAs using a KRISTMAG®-heater-magnet-module (HMM)
  • Process development of VGF-growth technology, particularly using non-stationary magnetic fields
  • 2D- and 3D modelling of temperature, Lorentz force and velocity fields in crystal growth via software CrysMAS and ANSYS CFX / ANSYS Emag
  • Investigation of the use of ultrasonic/vibration during the crystal growth
  • Studies on doping and impurity incorporation into crystals under the influence of external fields – carrying out studies on the material properties of GaAs
  • Optimization of crystal growth processes using artificial neural networks

working Group Gallium Arsenide - Publications

Publications

R. Zwierz, N. Dropka, A. Glacki, U. Juda, Ch. Frank-Rotsch
Flattening of solid-liquid interface in VGF-GaAs growth by various travelling magnetic fields
in: E. Baake, B. Nacke (eds.), Proceedings of XVIII International UIE-Congress on Electrotechnologies for Material Processing
Hannover (2017) 474 - 479
ISBN:978-3-8027-3095-5

N. Dropka, M. Holena, Ch. Frank-Rotsch
TMF optimization in VGF crystal growth of GaAs by artificial neural networks and Gaussian process models
in: E. Baake, B. Nacke (eds.), Proceedings of XVIII International UIE-Congress on Electrotechnologies for Material Processing
Hannover (2017) 203 - 208
ISBN:978-3-8027-3095-5

N. Dropka, M. Czupalle, T. Ervik, F.M. Kiessling        
Scale up Aspects of Directional Solidification and Czochralski Silicon Growth Processes in Traveling Magnetic Fields.
J CRYST GROWTH 451 (2016) 95 - 102            
doi.org/10.1016/j.jcrysgro.2016.07.020

N. Dropka, Ch. Frank-Rotsch, P. Rudolph    
Influence of Peripheral Vibrations and Traveling Magnetic Fields on VGF Growth of Sb - Doped Ge Crystals.
J CRYST GROWTH 453 (2016) 27 - 33
doi.org/10.1016/j.jcrysgro.2016.07.040

N. Dropka, Ch. Frank-Rotsch
Enhanced VGF Growth of Single- and Multi-Crystalline Semiconductors Using Pulsed TMF.
MHD  51 (2015) 149 - 156
ISSN: 0024-998X

H.Ch. Alt, H.E. Wagner, A. Glacki, Ch. Frank-Rotsch, V. Häublein
Isotopic Study of Mid-Infrared Vibrational Modes in GaAs Related to Carbon and Nitrogen Impurities.
PHYS Status Solidi B 252 (2015) 1827 - 1831
doi:10.1002/pssb.201552028

A. Glacki, N. Dropka, C. Frank-Rotsch, U. Juda, M. Naumann
Characterization of 4 Inch VGF-GaAs Single Crystals Grown in a Heater-Magnet Module.
J CRYST GROWTH 397 (2014) 6 - 12
doi:10.1016/j.jcrysgro.2014.03.050

N. Dropka, Ch. Frank-Rotsch
Enhanced VGF-GaAs Growth Using Pulsed Unidirectional TMF.
J CRYST GROWTH 386 (2014) 146 - 153
doi:10.1016/j.jcrysgro.2013.09.027

N. Dropka, Ch. Frank-Rotsch
Accelerated VGF-Crystal Growth of GaAs under Travelling Magnetic Fields.
J CRYST GROWTH 367 (2013) 1 - 7 
doi:10.1016/j.jcrysgro.2013.01.017

N. Dropka, Ch. Frank-Rotsch, W. Miller, P. Rudolph
Influence of Travelling Magnetic Fields on S-L Interface Shapes of Materials with Different Electrical Conductivities.
J CRYST GROWTH 338 (2012) 208 - 213
doi:10.1016/j.jcrysgro.2011.10.007

Ch. Frank-Rotsch, U. Juda, B. Ubbenjans, P. Rudolph
VGF Growth of 4 inch VGF-Ga-doped Germanium Crystals Under Magnetic and Ultrasonic Fields.
J CRYST GROWTH 352 (2012) 16 - 20
doi:10.1016/j.jcrysgro.2012.02.015

Patents

F.M. Kiessling, P. Rudolph, N. Dropka, Ch. Frank-Rotsch
Verfahren zur gerichteten Kristallisation von Ingots.
Deutsches Patent- und Markenamt 2016-01-14
DE102011076860 B4

P. Lange, D. Jockel, M. Ziem, P. Rudolph, Ch. Frank-Rotsch, F.M. Kiessling, M. Czupalla, B. Nacke, H. Kasjanow
Vorrichtung zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen.
Deutsches Patent- und Markenamt 2009-10-08, 2008-12-14,  Europäisches Patentamt 2010-03-10,2012-03-28, Weltpatentamt 2008-12-24, 2009-02-26 KristMAG®
DE 10 2007 028 547 B4DE 102007028547 A1EP 2162570 A2EP 2162570 B1WO 2008155138 A2WO 2008155138 A3 

N. Dropka, Ch. Frank-Rotsch, P. Rudolph, R.-P. Lange, U. Rehse
Kristallisationsanlage und Kristallisationsverfahren zur Herstellung eines Blocks aus einem Material, dessen Schmelze elektrisch leitend ist.
Deutsches Patent- und Markenamt 2012-03-22,2013-10-24, Weltpatentamt 2012-03-29
DE 102010041061 A1, DE 102010041061 B4WO 2012038432 A1

Ch. Frank-Rotsch, P. Rudolph, P. Lange, O. Klein, B. Nacke
Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen.
Deutsches Patent- und Markenamt 2009-08-16 KristMAG®
DE 10 2007 028 548 B4

N. Dropka, Ch. Frank-Rotsch, M. Ziem, P. Lange
Verfahren und Vorrichtung zur gerichteten Kristallisation von Kristallen aus elektrisch leitenden Schmelzen. 
Deutsches Patent- und Markenamt  2013-06-13 KristMAG®
DE 10 2012 204 313 B3 

N. Dropka, U. Rehse, P. Rudolph
Verfahren und Anordnung zur Herstellung von Kristallblöcken hoher Reinheit und dazugehörige Kristallisationsanlage.
Deutsches Patent- und Markenamt 2012-11-29
DE 102010028173 B4

R. Ziem, R.-P. Lange
Vorrichtung zur Herstellung von Kristallen aus elektrisch leitfähigen Schmelzen.
Deutsches Patent- und Markenamt 2009-09-03 KristMAG®
DE 102007020239 B4

F. Büllesfeld, N. Dropka, W. Miller, U. rehse. P. Rudolph, U. Sahr
Verfahren zum Erstarren einer Nichtmetallschmelze.
Deutsches Patent- und Markenamt 2010-06-10, 2011-11-17, Europäisches Patentamt 2011-10-05, 2012-12-26, United States Patent and Trademark Office 2011-12-22, Weltpatentamt 2010-06-03, 2010-07-29
DE 102008059521 A1DE 102008059521 B4EP 2370617 A2EP 2370617 B1 US 20110309555 A1WO 2010060802 A2
WO 2010060802 A3 

Kristmag-Team, Markeninhaber FVB eV
Europäische Gemeinschagftsmarke Kristmag - Eintragung. KristMAG®
OHM - Office for Harmonization in the Internal Market
006368641

Forschung klass Halbleiter GaAs Bild rechts EN

GaAs 01
Simulated Lorentz force density in GaAs melt
during VGF growth

Partnerlogo 1 EN

Partnerlogo 2

Partnerlogo 3