Working Group Multicrystalline Silicon - Summary

Directional solidification (DS) is the standard process for large-scale production of multi-crystalline (mc) ingots for Si-based solar cells. The motivation for improving the material quality of mc-Si is high, as this would lead to a significant cost reduction in terms of price/Wp. There is a strong focus towards higher efficiencies in the photovoltaic industry, and the desire to reduce lifetime limiting defects. Accordingly, mc-Si manufacturing is forced to develop and shift towards new growth technologies.

Since the solidification process is responsible for introducing most of the defects, various solidification techniques have been suggested. Three main types of growth concept are applied in the group in order to obtain different ingot qualities: multi-crystalline-Si, quasi-mono-Si, and the so-called high-performance mc-Si. For all these process developments traveling magnetic fields have always been applied to improve the conditions at the solid-liquid interface by controlled melt flows. Process developments have been carried out in G1- and G2-sized furnaces equipped with KRISTMAG® heater-magnet modules.

The KRISTMAG® project has been awarded the Berlin Brandenburg Innovation Award.

Key Publications

F.M. Kiessling, F. Büllesfeld, N. Dropka, Ch. Frank-Rotsch, M. Müller, P. Rudolph
Characterisation of Mc-Si Directionally Solidified in Travelling Magnetic Fields.
J CRYST GROWTH 
360 (2012) 81-86
doi:10.1016/j.jcrysgro.2012.03.017

Ch. Kudla, A.T. Blumenau, F. Büllesfeld, N. Dropka, Ch. Frank-Rotsch, F.M. Kiessling, O. Klein, P. Lange, W. Miller, U. Rehse, U. Sahr, M. Schellhorn, G. Weidemann, M. Ziem, G. Bethin, R. Fornari, M. Müller, J. Sprekels, V. Trautmann, P. Rudolph
Crystallization of 640 Kg Mc-Silicon Ingots Under Traveling Magnetic Field by Using a Heater Magnet Module.
J CRYST GROWTH 365 (2013) 54 - 58
doi:10.1016/j.jcrysgro.2012.11.049

P. Karzel, M. Ackermann, L. Gröner, C. Reimann, M. Zschorsch, S. Meyer, F. Kiessling, S. Riepe, and G. Hahn
Dependence of Phosphorous Gettering and Hydrogen Passivation Efficacy on Grain Boundary Type in Multicrystalline Silicon.
J APPL PHYS 114 (2013) 244902
doi:10.4229/28thEUPVSEC2013-2CO.1.5

Working Group Multicrystalline Silicon - Methods

  • Manipulation and control of convection flows and impurity distributions in silicon melts by means of non-steady magnetic fields

  • Application of traveling magnetic fields in G1-(15 kg) and G2- sized (75 kg) Vertical Gradient Freeze furnaces in order to adjust the morphology of the solid-liquid interface, to control the shape of the phase boundary and the incorporation of dopants and impurities

  • Processes developments for the directional solidification of the silicon melt under the influence of different non-steady magnetic fields for quasi-mono, high-performance mc-Si, and multi-crystalline Si ingots

  • Investigation of the influence of different crucible materials, their coatings and the process parameter of the gas atmosphere on the ingot properties

  • 2D- as well as 3D modeling of temperature and Lorentz force fields as well as flow fields in the melt and in the gas phase via software such as CrysVUn, STHAMAS-3D and ANSYS CFX / ANSYS Emag

Working Group Multicrystalline Silicon - Publications

Publications

N. Dropka, M. Holena
Optimization of magnetically driven directional solidification of silicon using artificial neural networks and Gaussian process models
J CRYST GROWTH 471 (2017) 53 – 61
doi.org/10.1016/j.jcrysgro.2017.05.007

R. Zwierz, N. Dropka, A. Glacki, U. Juda, Ch. Frank-Rotsch
Flattening of solid-liquid interface in VGF-GaAs growth by various travelling magnetic fields
in: E. Baake, B. Nacke (eds.), Proceedings of XVIII International UIE-Congress on Electrotechnologies for Material Processing
Hannover (2017) 474 - 479
ISBN:978-3-8027-3095-5

N. Dropka, M. Holena, Ch. Frank-Rotsch
TMF optimization in VGF crystal growth of GaAs by artificial neural networks and Gaussian process models
in: E. Baake, B. Nacke (eds.), Proceedings of XVIII International UIE-Congress on Electrotechnologies for Material Processing
Hannover (2017) 203 - 208
ISBN:978-3-8027-3095-5

I. Buchovska, O. Liaskovskiy, T. Vlasenko, S. Beringov, F.M. Kiessling
Different Nucleation Approaches for Production of High-Performance Multi-Crystalline Silicon Ingots and Solar Cells
SOL ENERG MAT SOL C 159 (2017) 128 - 135
doi.org/10.1016/j.solmat.2016.08.038

N. Dropka, Ch. Frank-Rotsch, P. Rudolph    
Influence of Peripheral Vibrations and Traveling Magnetic Fields on VGF Growth of Sb - Doped Ge Crystals
J CRYST GROWTH 453 (2016) 27 - 33
doi.org/10.1016/j.jcrysgro.2016.07.040

N. Dropka, M. Czupalle, T. Ervik, F. M. Kiessling
Scale up Aspects of Directional Solidification and Czochralski Silicon Growth Processes in Traveling Magnetic Fields.
J CRYST GROWTH 451 (2016) 95 - 102
doi:10.1016/j.jcrysgro.2016.07.020

N. Dropka, Ch. Frank-Rotsch
Enhanced VGF Growth of Single- and Multi-Crystalline Semiconductors Using Pulsed TMF.
Magnetohydrodynamics 51 (2015) 149 - 156
ISSN: 0024-998X

N. Dropka, T. Ervik,  F.M. Kiessling
Scale-Up of DS-Silicon Growth Process Under TMF.        
8th Intern. Conference on Electromagnetic Processing of Materials
EPM 2015 proceedings, Cannes, October 2015
Eds. J. Etay, Y. Fautrelle (2015) 129 - 132
HAL Id: hal-01331860

D. Linke, N. Dropka, F.M. Kiessling, M. König, J. Krause, R.-P. Lange, D. Sontag
Characterization of a 75 kg mc-Si Ingot Grown in a KRISTMAG-Type G2-Sized DS Furnace.
SOL ENERG MAT SOL C 130 (2014) 652 - 660
doi:10.1016/j.solmat.2014.04.028

J.W. Tomm, M. Hempel, F. La Mattina, F.M. Kiessling; T. Elsaesser
Analysis of Bulk and Facet Failures in AlGaAs-Based High-Power Diode Lasers.
Proc. SPIE 8640, Novel In-Plane Semiconductor Lasers XII, 86401F (March 4, 2013)
doi:10.1117/12.2003465

Ch. Kudla, A.T. Blumenau, F. Büllesfeld, N. Dropka, Ch. Frank-Rotsch, F.M. Kiessling, O. Klein, P. Lange, W. Miller, U. Rehse, U. Sahr, M. Schellhorn, G. Weidemann, M. Ziem, G. Bethin, R. Fornari, M. Müller, J. Sprekels, V. Trautmann, P. Rudolph
Crystallization of 640 Kg Mc-Silicon Ingots Under Traveling Magnetic Field by Using a Heater Magnet Module.
J CRYST GROWTH 365 (2013) 54 - 58
doi:10.1016/j.jcrysgro.2012.11.049

P. Karzel, M. Ackermann, L. Gröner, C. Reimann, M. Zschorsch, S. Meyer, F. Kiessling, S. Riepe, G. Hahn
Dependence of Phosphorous Gettering and Hydrogen Passivation Efficacy on Grain Boundary Type in Multicrystalline Silicon.
J APPL PHYS 114 (2013) 244902
doi:10.4229/28thEUPVSEC2013-2CO.1.5

M. Hempel, J.W. Tomm, F. La Mattina, I. Ratschinski, M. Schade, I. Shorubalko, M. Stiefel, H.S. Leipner, F.M. Kiessling, T. Elsaesser
Microscopic Origins of Catastrophic Optical Damage in Diode Lasers.
IEEE J SEL TOP QUANT 19 (2013) 1500508
doi:10.1109/JSTQE.2012.2236303

Patents

V. Trautmann, P. Rudolph, F.-M. Kießling, R. Fornari
Crystallization Plant and Crystallization Processes
German Patent and Trademark Office 2011-06-01
DE 10 2009 046 845 A1

Kristmag-Team, Markeninhaber: FVB eV
Europäische Gemeinschaftsmarke KRISTMAG - Eintragung
OHIM - Office for Harmonization in the Internal Market
006368641

M. Czupalla, F.-M. Kießling, F. Kirscht, O. Klein, P. Lange, B. Lux, W. Miller P. Rudolph, M. Ziem
The Method of Growing Crystals from Electrically Conductive Melts, Which Crystallize in the Diamond or Zinc-Blende Structure.
German Patent and Trademark Office 2014-07-17 
DE 10 2009 027 436 B4  

F.M. Kießling, P. Rudolph, N. Dropka, Ch. Frank-Rotsch
A Method of Directional Crystallization of Ingots.
German Patent and Trademark Office 2016-01-14
DE 10 2011 076 860 B4

P. Lange, D. Jockel, M. Ziem, P. Rudolph, F. Kießling, Ch. Frank-Rotsch, M. Czupalla, B. Nacke, H. Kasjanow
An Apparatus for Producing Crystals of Electrically Conductive Melting. 
German Patent and Trademark Office 2009-10-08
DE 10 2007 028 547 B4 

F. Büllesfeld, N. Dropka, M. Miller, U. Rehse, P. Rudolph, U. Sahr
Method for the Solidification of a Non-Metal Melt.
German Patent and Trademark Office 2011-11-17 / United States Patent and Trademark Office 2011-12-22
DE 10 2008 059 521 B4 / US20110309555 A1

N. Dropka, U. Rehse, R. Peter
A Process for Producing High-Purity Crystal Blocks.
German Patent and Trademark Office 2012-11-29
DE10 2010 028 173 B4

Forschung klass Halbleiter Multi Si Bild rechts EN

mcSi02
Simulated Flow Velocities in the Melt of a Half Solidified G2 Large QM-Si Ingot

Partnerlogo 1 EN

Partnerlogo 2

Partnerlogo 3