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1. Introduction

Atomistic simulations and machine learning



3Materials simulations span multiple length and time scales
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4In the atomistic world, several properties of interest are obtained from a potential energy surface (PES)

ground state

local 
minimum

saddle 
point

energy

low high

A PES is illustrated with respect to 
system coordinates (positions, distances, 
angles etc.)

From a PES, we can derive: geometries, 
reaction energies, mechanical properties, 
dynamical behavior…

However, in principle, the energy from 
atomistic systems can be computed from 
the atomic numbers and coordinates:

E = f(Zi, ri)

(this is valid even in DFT or QC)



5Sometimes, the properties of interest can be obtained from simpler models

V(r) = 4ε [( σ
r )

12

− ( σ
r )

6

]

Instead of using quantum mechanics or DFT 
to model a PES, we can use simpler models 
to describe interatomic interactions.

This reduces the computational cost: 

analytical energy functions are much faster 

than quantum mechanics calculations 
(several orders of magnitude).

For example, a pairwise potential is a simple 
approximation of the interaction energy 
between atoms:

Eij = V(ri − rj)

Lennard-Jones potential: a simple example of pair potential



6For example, potentials for noble gas usually rely on LJ models:

V(r) = 4ε [( σ
r )

12

− ( σ
r )

6

]

Lennard-Jones potential: a simple example of pair potential

J. Hernandez-Rojas, D. Wales. JCP 119 (15), 7800 (2003)



7However, for more complicated systems, there are several options of potentials such as:

V(r) = 4ε [( σ
r )

12

− ( σ
r )

6

]
Lennard-Jones potential

V(r) = A [1 − e−a(r−req)]
Morse potential

V(r) = A(r − req)2

Harmonic potential

Buckingham-Coulomb potential

V(r) = Ae−Br −
C
r6

+
q1q2

4πε0r



8Usually, interatomic potentials involve a combination of these terms

V(r) =

e.g., the CHARMM22 force field:

∑
bonds

kb(b − b0)2 ∑
angles

kθ(θ − θ0)2 ∑
improp.

kω(ω − ω0)2 ∑
Urey−Bradley

ku(u − u0)2

∑
dihedrals

kϕ [1 + cos(nϕ − δ)] ∑
nonbond.

4εij (
σij

rij )
12

− (
σij

rij )
6

∑
nonbond.

qiqj

4πϵ0rij

+ + +

+ ++

Classical force fields are usually fit to 
structural, vibrational, and other energy-
based models from ab initio calculations.

The problem is: how to choose the 
functional forms and parameters?

M. Karplus et al. J. Phys. Chem. B 102 (18), 3586 (1998)

From the CHARMM22 paper:

😓



9…and there’s one more problem: cost vs. accuracy trade-off

Accurate methods (usually QM- or DFT-based) 
are computationally expensive to compute

The second problem is: how can we 
obtain accurate, yet fast potentials?

Z. Qiao et al. J. Chem. Phys. 153, 124111 (2020)
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Force fields are simple to compute, but their 
accuracy is low compared to coupled-cluster (or 
even DFT) methods.

(Accuracy computed by Qiao et al. with respect 
to the Hutchinson conformer benchmark)
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Figure adapted from:



10Enter machine learning (ML)

D. Zhang et al. “The AI Index 2022 Annual Report,” AI Index Steering 
Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022.

The use of ML has become a trend to address issues of automation, pattern recognition, and cost-accuracy trade-off
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IMAGENET: training cost (93% acc.)



11ML has been helping reduce the cost of calculations for materials and chemical systems

A. Chandrasekaran et al. npj Comp. Mater. 5, 22 (2019) 
Adapted from N. Fedik et al. Nat. Rev. Chem. 6, 653 (2022)

Cost of electronic structure prediction: 
DFT vs ML by Chandrasekaran et al.

J. Gilmer et al. arXiv:1704.01212 (2017)



12Particularly in interatomic potentials, ML helps in fitting to datasets

dataset

guess potential

actual (unknown) 
potential

ML methods enable a fitting to guess 
potentials based on a given dataset of interest.

But which ML methods should we use 
to implement force fields?

When implemented, this approach can 
automate the process of finding functional 
forms that fit to the data and bypasses 
functional forms that can be less accurate.

un
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13There are many ML methods and implementations possible…

atomization energy predictions

O. A. von Lilienfeld et al. Nat. Rev. Chem. 4, 347 (2020) Y. Zuo et al. J. Phys. Chem. A 124 (4), 731 (2020)



14…but the most popular ones are:

k(x1, x2)

Linear Methods Kernel/Gaussian 
Process Regression

Neural Networks 
(NNs)

Polynomial on many-body 
terms

Computes an explicit 
similarity between points

“Universal approximator” 
with non-linear mappingsℹ

Relies crafting a 
representation for the inputs

O(N3) complexity for 
training for GPR

Large number of trainable 
parameters😞

Simple and fast
Fewer data points 

(+uncertainty for GPR)
High accuracy😁



15Some examples in the literature:

Linear Methods Neural Networks 
(NNs)

SNAP (Thompson et al.) 

MTP (Shapeev) 

ACE (Drautz, Kovács et al.)

GPR: 

GAP (Bartok et al.) 

MLOTF (Li et al.) 

FLARE (Vandermause et al.) 

Other kernels with: 

sGDML (Chmiela et al.) 

FCHL repres. (Faber et al.) 

Coulomb matrices (Rupp et al.)

Behler-Parrinello 

Representation + NN 
(DeepMD, ANI etc.) 

Deep learning-based NNFF 
(SchNet etc.) 

Deep learning + equivariance 
(NequIP, PaiNN etc.) 

Deep learning + many-body 
expansion (MACE etc.)

this lecture:

Kernel/Gaussian 
Process Regression

k(x1, x2)



16One-slide neural network refresher

inputs outputs

hidden layer(s)

f(X) = σ (WX + b)

biasweight matrix

non-linearity

input

̂y = f(X)

estimated output

Training of neural networks requires setting a loss 
function (e.g., for regressors, no regularization):

ℒ = 𝔼X∼P(X) [∥ ̂y − y∥2]
which updates the weights using the 
backpropagation algorithm and gradient descent:

w(n+1)
ij = w(n)

ij − α
∂ℒ
∂wij

learning rateweight at 
iteration (n + 1)

loss gradient

Mini Tutorial: NNs are “universal approximators”
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2. NN Interatomic Potentials

Fitting PESes with neural networks



18Simplest possible approach in fitting a PES using a neural network

coordinates

energy

NN

The NN is trained to map input 
coordinates to energy for a given 
dataset.

Does this work?

T. Blank et al. J. Chem. Phys. 103, 4129 (1995)

Ni(111)

CO

x

θ
Yes, it works!

What are the advantages/
disadvantages of this approach?



19What are the advantages/disadvantages?

✅ Advantages ❌ Disadvantages

Fast

No need for extra 
information

Easy interpretation

No invariance to 
translation/rotation

(and/or) No invariance to 
permutation

No forces

Does not scale to larger 
systems



20Behler-Parrinello scheme

The neighborhood of each atom is encoded 
into symmetry functions, which embed the 
rototranslational invariance of the system.

J. Behler and M. Parrinello. PRL 98, 146401 (2007)

Atom-centered 
symmetry 
functions

Per-atom energy 
contribution

NN

The final energy is computed as:

E = ∑
i

Ei

Think about this: does dividing the 
energy make sense?



21But how to define symmetry functions, now?

J. Behler and M. Parrinello. PRL 98, 146401 (2007)

fc(rij) =
1
2

cos (
πrij

rc ) +
1
2

, rij < rc

G1
i = ∑

i≠j

e−η(rij−rs)2
fc(rij)

G2
i = 21−ζ ∑

i≠j,k

(1 + λ cos θijk)ζ

× e−η(r2
ij+r2

ik+r2
jk)

× fc(rij)fc(rik)fc(rjk)

cutoff

radial

angular

Symmetry functions

rij

rik

For each atom, N-body symmetry functions 
are calculated with different hyperparameters:

(η, rs, ζ)



22Visualizing these symmetry functions

J. Behler and M. Parrinello. PRL 98, 146401 (2007)

fc(rij) =
1
2

cos (
πrij

rc ) +
1
2

, rij < rc

G1
i = ∑

i≠j

e−η(rij−rs)2
fc(rij)

G2
i = 21−ζ ∑

i≠j,k

(1 + λ cos θijk)ζ

× e−η(r2
ij+r2

ik+r2
jk)

× fc(rij)fc(rik)fc(rjk)

cutoff

radial

angular

Symmetry functions

J. Behler. Chem. Rev. 121, 10037 (2021)



23Results for silicon melt at 3000 K

J. Behler and M. Parrinello. PRL 98, 146401 (2007)

The NN better approximates the structural 
properties of Si melt than other potentials



24Another benefit of using NN potentials: much better scaling with system size

L. Zhang et al. PRL 120, 143001 (2018)

Because DFT scales with the cube 
of the number of electrons, it is 
impractical to perform simulations 
for very large systems (more than 
a few hundreds of atoms)

On the other hand, evaluating 
energies in NNIPs often scales 
linearly with the number of data 
points, and can be easily 
parallelized considering local 
potentials.



25But the locality of the descriptor is also a shortcoming

J. Behler and M. Parrinello. PRL 98, 146401 (2007)

In the figure above, only atoms within 
Rc of the central atom are considered.

J. Behler. Chem. Rev. 121, 10037 (2021)

Because of the locality of the descriptor, the 
final model cannot fit to interactions such as 
long-range potentials.

Increasing the cutoff drastically increases the 
number of atomic environments that have to be 
sampled.

For multi-element systems, this is even harder.



26Different approaches have been proposed to deal with long-range interactions

J. Behler. Chem. Rev. 121, 10037 (2021)

The first option is to include explicit Coulomb 
terms for fixed charges for each atomic 
environment:

E = ∑
i

Ei + Eelec

But a better option may be to predict atomic 
charges using the symmetry functions, then 
predict a short-range energy and a long-range 
energy (figure on the right),

E = ∑
i

Ei +
1
2 ∑

i≠j

κij(rij)
QiQj

rij



27But there’s more: we can use several representations

J. Behler. Chem. Rev. 121, 10037 (2021)

≠

And there is a lot of discussion on why representations 
matter so much:

(the environments above, for example, are different, but have the 
same histogram of triangles)

S. Pozdnyakov et al. PRL 125, 166001 (2020)

Furthermore, many-body interactions also matter a lot!

D. Kovács et al. JCTC 17 (12), 7696 (2021)



28But there’s more: we can use several representations

J. Behler. Chem. Rev. 121, 10037 (2021)

≠

And there is a lot of discussion on why representations 
matter so much:

(the environments above, for example, are different, but have the 
same histogram of triangles)

S. Pozdnyakov et al. PRL 125, 166001 (2020)

Furthermore, many-body interactions also matter a lot!

D. Kovács et al. JCTC 17 (12), 7696 (2021)

The question now becomes: can we do 
better than designing representations?

What if we are missing critical factors when 
proposing new descriptors?

This is what we will learn next: 

Deep Learning



29To summarize what we have learned so far

J. Morrow et al. arXiv:2211.12484 (2022)



30

3. Deep Learning Potentials

Why use deep learning for interatomic potentials?



31A bit of history: why deep learning actually succeeded in other fields?

Figure from J. Wang et al. J. Manuf. Syst. 48, 144 (2018)

Traditional ML pipeline

Deep learning pipeline
Deep Learning: 
features identified 

along with the 
training process.



32In deep learning, the neural network architectures are more complicated (“deep”)

A. Krizhevsky et al. NeurIPS 25 (2012)

Image from X. Han et al. Remote Sens. 9 (8), 848 (2017)

number 
of filters

number 
of classes

“kernel”
Each one of these blocks is a NN 
(tensor + bias + activation)

Pixels x pixels x channels 
(3 for RGB)

AlexNet architecture



33If we take each of the filters, we will see the features extracted from the dataset:

C. Olah et al. Distill (2018). DOI: 10.23915/distill.00010A. Krizhevsky et al. NeurIPS 25 (2012)

Mini Tutorial: CNN activations

https://doi.org/10.23915/distill.00010
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Featurization Property

Σ −∇if(X)

Back to NNIPs: crafting features vs learning representations

Learned Representation Property

Σ −∇i



35But, again, how to represent our data?

In images, a mapping between a (N x N x 3) 
image and (C) classes is well-defined:

f : ℝN×N×3 → ℝC

In materials or molecules, our data is not an 
image nor a sequence. Instead, our mapping is 
for a set of atoms in the 3D space:

V : ℤ × ℝN×3 → ℝ
with the 3D space not well represented by an 
image.

(assuming the prediction of class logits)

Why images are not good enough?



36A more natural way to represent the data is a graph

We can initialize some features to each element 
(or even use random ones): 

By defining a molecule or material system as a 
graph, 

G = (V, E)
O

OH

O

O

O C H

Now we just need to learn a representation for 
each atomic environment



37How does a graph convolution look like in a molecule?

A. White. Living Journal of Computational Molecular Science 
https://dmol.pub (2022)

https://dmol.pub


Interactions 
between neighbors

New layer

Neural fingerprint

38How does a graph convolution look like in a molecule?

D. Duvenaud et al. NeurIPS 28 (2015)

Graph convolution on molecule
In some molecular systems, the graph is simply 
the connectivity graph of a molecule (covalent 
bonds).

Each atom interacts with its neighbors, and a 
“filter” is trained by understanding the 
interactions between neighbors.

Some problems with a graph-only approach: 

1. Connectivity graphs do not tell us anything about 
conformers (or PESes) 

2. What about materials?

This enables us to predict properties from the 
molecular graph.



39Let’s examine how the concept of “graph convolution” work with a solid material



40

Structural Fingerprints

d12

d14

d13
…

Pairwise distances

Like before, we analyze each atomic environment and create a fingerprint for them



41Then, we update the representations using a specific neural network architecture

h(n+1)
ih(n)

i

h(n)
j

eij

m(n+1)
i

Un

Mn



42The whole process is called “message passing” framework

What we are doing is combining the atomic 
environments in the graph, just like we saw for 
the CNNs.

The figure on the left shows a central atom and 
its neighborhood. Atoms which are faded away 
are not in the neighborhood of this central atom.

A message passing neural network takes the 
initial graph and representations and creates a 
node-based representation for each environment.



43The architecture of an MPNN

Mathematically, at the layer n for the node i, the 
message vector mi(n+1) is given by

m(n+1)
i = ∑

j∈𝒩(i)

Mn (h(n)
i , h(n)

j , eij)
where hi(n) is the representation of node i at layer 
n, Mn is a neural network, and N(i) is the 
neighborhood of i.

J. Gilmer et al. arXiv:1704.01212 (2017)

h(n+1)
i = Un (h(n)

i , m(n+1)
i )

The new representation hi(n+1) is given by

where Un is a neural network.



44This concept of “graph convolution” is very similar to a CNN

Graph convolution on geometryGraph convolution on image

CNN images: B. Sanchez-Lengeling et al. Distill.pub (2021)

CNN on image



45Application to NNIP: the Deep Tensor Neural Network (DTNN)

K. Schütt et al. Nat. Commun. 8, 13890 (2017)

The architecture looks complicated! Let’s break 
it down:

D12

Z2 embed

v12

D12

Nth-vector

v12



46DTNN showed interpretable filters and excellent prediction of molecular properties

K. Schütt et al. Nat. Commun. 8, 13890 (2017)

Different isomers of C7O2H10 Local contribution of a test charge 
(probing the NN):



47The limitations of the previous models for performing simulations at T > 0 K

K. Schütt et al. NeurIPS 30 (2017)

So far, the graph-based NNs have treated molecular 
graphs or ground-state properties. What if we 
wanted to perform MD simulations?

The problem with the previous NN architectures is that they mostly predict properties of a static graph or 
3D structure. If the atoms move, it is not guaranteed to vary the energy continuously.

F = − ∇rE



48SchNet as a continuous-filter NNIP

K. Schütt et al. NeurIPS 30 (2017)

SchNet architecture

The SchNet architecture is not too different from what we learned. 
On the image on the left, we can see: 

1. embedding layers, that map an atomic number to a vector. 

2. interaction blocks for representation learning with message 
passing. 

3. fully connected NNs, for predicting atom-wise energies (or 
properties). 

4. a sum at the end, pooling all the contributions from the atoms of 
the systems.



49How to fit to energies and forces?

K. Schütt et al. NeurIPS 30 (2017)

SchNet architecture
The trick to training this NN is to use information not only about 
the energy of the PES, but also the forces:

ℒ = λE∥E − ̂E∥2 + λF
1
n

n

∑
i=0

∥Fi − F̂i∥2

Where the predicted forces can be obtained by differentiating the 
predicting energy with respect to the input coordinates:

F̂i = −
∂ ̂E
∂Ri



50How does it perform?

K. Schütt et al. NeurIPS 30 (2017) 
K. Schütt et al. J. Chem. Phys. 148, 241722 (2018)

Predictions of energies + forces is 
better than just energies.

Why do you think this is the 
case?

Predictions of forces enables other 
properties to be obtained, such as 
vibrational spectra.



51Many more models were proposed in the field

N. Lubbers et al. J. Chem. Phys 148, 241715 (2018) O. Unke and M. Meuwly. JCTC 15 (6), 3678 (2019)

HIP-NN

Architecture inspired in 
many-body expansions

PhysNet

Prediction of atomic 
charges

DimeNet

J. Gasteiger et al. ICLR (2020), arXiv:2003.03123

Explicit treatment of 
three-body terms

There are many more models in the field nowadays. What is being improved?



52First improvement: symmetry, invariance, and equivariance

Images are invariant to translation, 
mirror (often), and rotation 
(sometimes).

original mirrored (some) rotation

dog same dog same dog

Molecule figure from: T. Smidt, e3nn (2021).  https://e3nn.org

Forces are equivariant to rotation: 
they transform according to the 
operation

original rotated
Force 

upwards

Force after 
rotation

https://e3nn.org


K. Schütt et al. ICML 139 (2021)

53Recent improvements in this area

B. Anderson et al. arXiv:1906.04015 (2019) S. Batzner et al. Nat. Commun. 13, 2453 (2022)

Cormorant

Covariant “neurons” for 
SO(3) symmetry

NequIP

E(3)-equivariant GNN

PaiNN

Uses directional message-
passing and vector repr.

These models are close to the state-of-the-art for several datasets



54Other improvements: many-body terms and better scaling

A. Musaelian et al. arXiv:2204.05249 (2022)

I. Batatia et al. arXiv:2206.07697 (2022)

Allegro

MACE

The math gets complicated, but the models get more accurate (and scale better)



55To summarize what we have learned so far

J. Morrow et al. arXiv:2211.12484 (2022)



56

4. Data

How to use, construct, and validate datasets in NNIPs?



57Machine learning needs data

For example, if we wanted to perform an MD simulation for ethanol, we we would observe that the 
sampling of configuration space changes with the temperature, as expected:

O. Unke et al. Chem. Rev. 121 (16), 10142 (2021)

How to create data?
To train a NN force field, we have to use the right datasets for our 
application of interest.



58Create data as you usually would: QM, DFT, etc.

ℹ: use AIMD trajectories as dataset 

😁: easy to perform 

😞: high cost, correlated samples

AIMD

normal mode 
sampling

ℹ: displace atoms randomly along the eigenvectors of the Hessian 

😁: easy to perform 

😞: small distortions only

enhanced 
sampling

ℹ: explore the PES with enhanced sampling methods (e.g., metadynamics) 

😁: better exploration of the PES 

😞: harder to implement, often relying on ab initio

active 
learning

ℹ: improve the dataset over time by analyzing the uncertainties 

😁: good quality datasets, may be cheaper to produce 

😞: requires uncertainty metric, long process let’s focus on this one



59What is active learning?

B. Settles. Active Learning Literature Survey (2009)

e.g., NN-based AIMD

e.g., DFT

e.g., NNIP



60Active learning requires uncertainty quantification to identify “unlabeled” configurations

C. Schran et al. J. Chem. Phys. 153, 104105 (2020)

What is the problem of this?



61Examples of interesting dataset constructions: GPR, FLARE and high-entropy alloys

J. Vandermause et al. npj Comp. Mater. 6, 20 (2020)

uncertainty



62Examples of interesting dataset constructions: aluminum dataset from ANI potential

J. Smith et al. Nat. Commun. 12, 1257 (2021)

t-SNE



63Some datasets typically used out there

S. Chmiela et al. Sci. Adv. 3 (5), e1603015 (2017) 
A. Christiansen et al. MLST 1, 045018 (2020)

D. Kovács et al. JCTC 17 (12), 7696 (2021)

rMD17

Small molecules with 
their conformers

3BPA

Flexible molecule sampled 
at different temperatures

Open Catalyst (OC20)

L. Chanussot et al. ACS Catalysis 11, 6059 (2021)

Adsorption energies on 
inorganic catalysts

There are many, many datasets…
Remember: train-validation-test, k-fold CV, error 
metrics and many more.



64To summarize what we have learned so far

J. Morrow et al. arXiv:2211.12484 (2022)



65

5. Frontiers of NNIPs

What’s next for ML interatomic potentials?



J. Vita and D. Schwalbe-Koda (2023)

66Interesting trends in the field

D. Kovács et al. JCTC 17 (12), 7696 (2021)

Uncertainty & extrapolation Better metrics & interpretabilityChallenging applications

J. Westermayr et al. Nat. Chem. 14, 914 (2022)



67For example: ML potentials suffer when extrapolating…



68Neural networks are susceptible to adversarial attacks

C. Szegedy et al. (2013), arXiv:1312.6199 
I. Goodfellow et al. ICLR (2014), arXiv:1412.6572



69

D. Tsipras et al. ICLR (2019)

min
θ

𝔼(x,y)∼𝒟 [max
δ∈Δ

ℒ(hθ(x + δ), y)]

Increasing NN robustness to adversarial attacks

find the NN weights 
that minimize

across the whole 
dataset under study

and for perturbations δ in 
the set of allowed 
perturbations Δ

the perturbed loss 
function



70Qualitative results of robust NNs

Question: how to do this for NN potentials? D. Tsipras et al. ICLR (2019)



71

min
θ

𝔼(X,E,F)∼𝒟 [max
δ∈Δ

ℒ(Xδ, Eδ, Fδ; θ)]

Objective of a robust neural network regressor

find the NN weights 
that minimize

across the whole 
dataset under study

and for perturbations δ in 
the set of allowed 
perturbations Δ

the perturbed loss 
function of the regressor

Question: how to generate the perturbed 
samples and their ground truth values?

Idea: find geometries that maximize the 
epistemic uncertainty of the NN potential!

Eδ, Fδ come from reference 
calculations in an AL loop



72Adversarial loss depends on the uncertainty

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



73Robust training is an active learning loop

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



74Sample new points through adversarial attacks train data
test data

-4

-2

0

2
en

er
gy

ground truth
prediction

10-3

10-2

en
er

gy
 v

ar
ia

nc
e

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
r

10-4

10-3

10-2

10-1

fo
rc

e 
va

ria
nc

e

train data
test data

-4

-2

0

2

en
er

gy

ground truth
prediction

10-3

10-2

en
er

gy
 v

ar
ia

nc
e

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
r

10-4

10-3

10-2

10-1
fo

rc
e 

va
ria

nc
e

attacks towards the 
transition state are good
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Goals of a good adversarial attack: 

• Find points of maximum uncertainty 

• Penalize going towards crazy high energies min
θ

𝔼(X,E,F)∼𝒟 [max
δ∈Δ

ℒ(Xδ, Eδ, Fδ; θ)]
D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



75Loss function for adversarial attack

Construct partition function from training set:

Q = ∑
(X,E,F)∈𝒟

exp ( −E
kT )

p(Xδ) =
1
Q

exp ( −Ē(Xδ)
kT )

Estimate Boltzmann probability given the mean 

energy from NN ensemble:
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ℒ(X, δ; θ) = max

δ
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F(Xδ)

The final adversarial objective then becomes

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



76Adversarial attacks for 2D double well

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



77How adversarial attacks look like for molecules?

ℒadv(X, δ; θ)

σ2
F(Xδ)

σ2
E(Xδ)

Ē(Xδ)

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)



78How efficient is the active learning with this technique?

stable trajs.MD
77%

gen 2

train

7,647 random

9,845 MD

4,879 NNMD
stable trajs.MD

92%

train
80%

stable trajs.MD
trainattack

7,647 random

9,845 MD

543 attacks

97%
stable trajs.MD

datasets

gen 1

train

7,647 random

9,845 MD

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

Tutorial: performing atomistic 

adversarial attacks
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Summary

What did we learn today?



80To summarize what we have learned today

J. Morrow et al. arXiv:2211.12484 (2022)



81A few resources to learn more

Chemical Reviews 121 (16) (2021): Several reviews on ML for materials

Papers cited in this presentation: In-depth discussion on the advances of NNIPs and much more.

Andrew White’s dmol.pub (https://dmol.pub/): interactive resources to learn more about ML, 
deep learning, and their applications to molecules and materials

Michael Nielsen’s online book (http://neuralnetworksanddeeplearning.com/index.html): several 
explanations on the math/workings of neural networks

3blue1brown’s videos on NNs: excellent visualizations and explanations on NNs 

(https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi)

I. Goodfellow et al. Deep Learning. MIT Press (2016): in-depth discussion of deep learning 
theory (https://www.deeplearningbook.org/)

https://dmol.pub/
http://neuralnetworksanddeeplearning.com/index.html
https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.deeplearningbook.org/
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