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1. Introduction

Atomistic simulations and machine learning



Materials simulations span multiple length and time scales
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In the atomistic world, several properties of interest are obtained from a potential energy surface (PES)

energy From a PES, we can derive: geometries,

N _ reaction energies, mechanical properties,
low high

dynamical behavior...

A PES is illustrated with respect to
system coordinates (positions, distances,

angles etc.)

However, in principle, the energy from

atomistic systems can be computed from

the atomic numbers and coordinates:

E=fZ,r)

\

saddle
point

local J
minimum

(this is valid even in DFT or QC)

\, ground state



Sometimes, the properties of interest can be obtained from simpler models

Instead of using quantum mechanics or DFT

to model a PES, we can use simpler models

Lennard-Jones potential: a simple example of pair potential

to describe interatomic interactions.

This reduces the computational cost:

analytical energy functions are much faster

than quantum mechanics calculations

(several orders of magnitude).

For example, a pairwise potential is a simple
approximation of the interaction energy

between atoms:
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For example, potentials for noble gas usually rely on LJ models:

J. Chem. Phys., Vol. 119, No. 15, 15 October 2003

Lennard-Jones potential: a simple example of pair potential

10 -
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FIG. 1. Comparison of the Lennard-Jones potential used for rare gas inter-
actions (labeled Ar—Ar) with the Mason—Schamp functions employed for
Ar-K™ and Xe—Cs™. The appropriate Lennard-Jones pair well depth and
pair equilibrium separation are taken as the units of energy and distance,
respectively.

J. Hernandez-Rojas, D. Wales. JCP 119 (15), 7800 (2003) 0.8 1.0 12 1.4 1.6
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However, for more complicated systems, there are several options of potentials such as:

Lennard-Jones potential 3 -
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Usually, interatomic potentials involve a combination of these terms S

e.g., the CHARMMZ22 force field:

vin= 2 k=0’ +

2 kf0—6" +

bonds angles
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Classical force fields are usually fit to
structural, vibrational, and other energy-

based models from ab initio calculations.

The problem is: how to choose the

functional forms and parameters?

1mprop. Urey—Bradley
12 6
. . Arent::
nonbond. Fij Fij nonbond. 0%

From the CHARMM22 paper:

Adjustment of the parameters was performed manually, although in certain cases (e.g., for proline)
automated procedures were employed. We have found that automated procedures must be used with
great care owing to the extensive nature of parameter space, correlation among the parameters, and
their underdetermined nature. An automated least-squares procedure often leads to a combination of
‘“unphysical’ parameters that reproduce the input data. More meaningful parameter values, which
have a wider range of applicability, were obtained manually with “reasonable” parameter ranges for the
optimization in the iterative refinement procedure described above.

M. Karplus et al. J. Phys. Chem. B 102 (18), 3586 (1998)



...and there's one more problem: cost vs. accuracy trade-off

1.0 A @
ccuracy better € CC
_ , Accurate methods (usually QM- or DFT-based)
(median R?) . .
are computationally expensive to compute
better
0.3 better 1. B97-3c Force fields are simple to compute, but their
2. PBE-D3(BJ)/Def2-SVP |
3. PBE-D3(BJ)/Def2-TZVP accuracy is low compared to coupled-cluster (or
GFN2 4. B4LYP-D3(BJ)/Def2-SVP
5 PBEH-3c even DFT) methods.
6. B3LYP-D3(BJ)/Def2-TZVP
0.6 7. @B97X-D3/Def2-TZVP
GFN1 .
The second problem is: how can we
GFNO
obtain accurate, yet fast potentials?
semiempirical
0.4
DFT
PM7 Time (S)
0.2
10~ 10° 102 10*
Figure adapted from: (Accuracy computed by Qiao et al. with respect

Z. Qiao et al. J. Chem. Phys. 153, 124111 (2020) to the Hutchinson conformer benchmark)



Enter machine learning (ML) 10

The use of ML has become a trend to address issues of automation, pattern recognition, and cost-accuracy trade-off

NUMBER of Al PUBLICATIONS by FIELD of STUDY (EXCLUDING OTHER Al), 2010-21 IMAGENET: training cost (93% acc.)
Source: Center for Security and Emerging Technology, 2021 | Chart: 2022 Al Index Report ) )
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D. Zhang et al. “The Al Index 2022 Annual Report,” Al Index Steering
Committee, Stanford Institute for Human-Centered Al, Stanford University, March 2022.



ML has been helping reduce the cost of calculations for materials and chemical systems 11

1061'.;
- Cost of electronic structure prediction:
i
| DFT vs ML by Chandrasekaran et al.
10°4 m— DFT, O(N?)
:
Targets =
10%3 g
103 ds | E,w I
= Machine learning, O(N)
c 10’
S
§ J Prediction of charge
. o T density and density
Message Passing Neural Net . o
~ 10-
//_\ /] \ 3 = Descriptor encoding
NV \ = ] \ g
R\ W/ i
101- 144 Al atoms | | 2,304 Al atoms
~ 107 seconds : - 
|
1 , 1 i 1 [ i 1 [ 1 1 1 '
100 200 500 1,000 2,000 3,000
Number of atoms
| | | | |
5.9 23.3 52.7 70.3 93.6

Number of grid points (millions)

A. Chandrasekaran et al. npj Comp. Mater. 5, 22 (2019)
J. Gilmer et al. arXiv:1704.01212 (2017) Adapted from N. Fedik et al. Nat. Rev. Chem. 6, 653 (2022)



Particularly in interatomic potentials, ML helps in fitting to datasets 12

3 - ML methods enable a fitting to guess

potentials based on a given dataset of interest.

2 -
When implemented, this approach can
automate the process of finding functional
1 - error
actual (unknown) forms that fit to the data and bypasses
potential functional forms that can be less accurate.

\/ dataset
| |

1.2 1.3 14 15 16 17 18 But which ML methods should we use

r to implement force fields?



There are many ML methods and implementations possible...
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...but the most popular ones are:

Linear Methods

Polynomial on many-body

terms
& Simple and fast

Relies crafting a
representation for the inputs

Kernel /Gaussian
Process Regression

Computes an explicit
similarity between points

Fewer data points
(+uncertainty for GPR)

O(N3) complexity for
training for GPR

Neural Networks
(NNs)

“Universal approximator”
with non-linear mappings

High accuracy

Large number of trainable

parameters

14



Some examples in the literature:

Linear Methods

5

SNAP (Thompson et al.)
MTP (Shapeev)
ACE (Drautz, Kovacs et al.)

Kernel /Gaussian

Process Regression

GPR:
GAP (Bartok

et al.)

MLOTEF (Li et al.)
FLARE (Vandermause et al.)

Other kernels with:

sGDML (Chmie
FCHL repres. (Fa

a et al.)

oer et al.)

Coulomb matrices (Rupp et al.)

15

this lecture:

Neural Networks
(NNs)

P
b

Behler-Parrinello

Representation + NN
(DeepMD, ANI etc.)

Deep learning-based NNFF
(SchNet etc.)

Deep learning + equivariance
(NequlP, PaiNN etc.)

Deep learning + many-body
expansion (MACE etc.)



One-slide neural network refresher

hidden layer(s)

Inputs outputs

[ non-linearity
(X)) =0c(WX + b)

[

input weight matrix  bias

§ = f(X)
T

estimated output

16

Training of neural networks requires setting a loss

function (e.g., for regressors, no regularization):

Z = —X~P(X) [Hy —YHZJ

which updates the weights using the

backpropagation algorithm and gradient descent:

loss gradient

0F </

WD = 0 _ o OF

T (

Y Y T an]
weight at

iteration (n + 1)

learning rate

Mini Tutorial: NNs are “universal approximators”



2. NN Interatomic Potentials

Fitting PESes with neural networks

Lr



Simplest possible approach in fitting a PES using a neural network

Yes, it works!

NN

energy

coordinates

The NN is trained to map input
coordinates to energy for a given
dataset.

T. Blank et al. J. Chem. Phys. 103, 4129 (1995)

Does this work?
What are the advantages/

disadvantages of this approach?

13



What are the advantages/disadvantages?

Advantages

Fast

No need for extra
information

Easy Interpretation

X Disadvantages

No invariance to
translation/rotation

(and/or) No invariance to
permutation

No forces

Does not scale to larger
systems

19



Behler-Parrinello scheme NN 20
Atom-centered
Per-atom energy
symmetry e
/ ymimetry i @) contribution
The final energy is computed as:
l
The neighborhood of each atom is encoded Think about this: does dividing the

into symmetry functions, which embed the energy make sense?’

rototranslational invariance of the system.

J. Behler and M. Parrinello. PRL 98, 146401 (2007)



But how to define symmetry functions, now?

c>\

For each atom, N-body symmetry functions

are calculated with different hyperparameters:

(1,15, C)

cutoff

radial

angular

21

Symmetry functions

7T 1

1
Vi) =—CoS| — | +—, 1; <VF,
Il 2 r 27 Y

C

Gil — Z —n(7; —l’)2f (},lj)

I7]

=27 (1 + Acos O,
i#],k

Xf(rl])f( k)f( k)

J. Behler and M. Parrinello. PRL 98, 146401 (2007)



Visualizing these symmetry functions 22
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J. Behler. Chem. Rev. 121, 10037 (2021) J. Behler and M. Parrinello. PRL 98, 146401 (2007)



Results for silicon melt at 3000 K 23

— DFT
— Bazant
— Lenosky

Tersoft
— NN

RDF (arb. units)

0.0
1.5 20 25 30 35 40 45 50 355

The NN better approximates the structural r(A)
properties of Si melt than other potentials

J. Behler and M. Parrinello. PRL 98, 146401 (2007)



Another benefit of using NN potentials: much better scaling with system size 24

CPU core time per step [s]

DPMD —&—
TIP3P —&—
i DFT: PBEO+TS —— .
5 DFT: PBE+TS —&—

10° 10"
Number of molecules

10°

Because DFT scales with the cube
of the number of electrons, it is
impractical to perform simulations

for very large systems (more than
a few hundreds of atoms)

On the other hand, evaluating
energies in NNIPs often scales
linearly with the number of data
points, and can be easily
parallelized considering local
potentials.

L. Zhang et al. PRL 120, 143001 (2018)



But the locality of the descriptor is also a shortcoming 25

Because of the locality of the descriptor, the
final model cannot fit to interactions such as
long-range potentials.

Increasing the cutoff drastically increases the

number of atomic environments that have to be
sampled.

For multi-element systems, this is even harder.

In the figure above, only atoms within

R. of the central atom are considered.

J. Behler. Chem. Rev. 121, 10037 (2021) J. Behler and M. Parrinello. PRL 98, 146401 (2007)



Different approaches have been proposed to deal with long-range interactions

Cartesian Symmetry Atomic Atomic
Coordinates  Functions NNs Energy

@*@é ﬁﬁ

The first option is to include explicit Coulomb

terms for fixed charges for each atomic

environment:

Cartesian Symmetry Atomic

But a better option may be to predict atomic Coordinates  Functions NN

charges using the symmetry functions, then
predict a short-range energy and a long-range
energy (figure on the right),

1 Q:0,
E = ;Ei+52 ) ——

i#] g

J. Behler. Chem. Rev. 121, 10037 (2021)



But there's more: we can use several representations

descriptor

atom-centered symmetry functions
bispectrum

Coulomb matrix

SOAP

permutation invariant polynomials
Ewald sum matrix

bag of bonds

overlap matrix

polynomials in MTPs

spherical harmonics

Chebyshev polynomials
many-body tensor representation
histogram of internal coordinates
FCHL

weighted symmetry functions
smoothed atomic densities
orthogonal descriptors

long-distance equivariant repres.

J. Behler. Chem. Rev. 121, 10037 (2021)

year

2007
2010
2012
2013
2013
2015
2015
2016
2016
2017
2017
2017
2017
2018
2018
2019
2019
2019

27

And there is a lot of discussion on why representations

matter so much:

(the environments above, for example, are different, but have the

same histogram of triangles)
S. Pozdnyakov et al. PRL 125, 166001 (2020)

Furthermore, many-body interactions also matter a lot!

E,=Ey;, + Ey + E3 + Ey4 +
2 3 4

Q+Q+Q+Q ‘.

D. Kovacs et al. JCTC 17 (12), 7696 (2021)



But there's more: we can use several representations

descriptor year
atom-centered symmetry functions 2007
Bigpectrm B What if we are missing critical factors when
Coulomb matrix 2012 _ _
SOAP 5013 proposing new descriptors?
permutation invariant polynomials 2013
Ewald sum matrix 2015
bag of bonds 2015
overlap matrix 2016
polynomials in MTPs 1016 The question now becomes: can we do
spherical harmonics 2017 better than designing representations?
Chebyshev polynomials 2017
many-body tensor representation 2017
histogram of internal coordinates 2017
FCHL 2018
weighted symmetry functions 2018 This is what we will learn next:
smoothed atomic densities 2019 _
orthogonal descriptors 2019 Deep Learning

long-distance equivariant repres. 2019

J. Behler. Chem. Rev. 121, 10037 (2021)



To summarize what we have learned so far 29
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J. Morrow et al. arXiv:2211.12484 (2022)



3. Deep Learning Potentials

Why use deep learning for interatomic potentials?

30



A bit of history: why deep learning actually succeeded in other fields? 31

Traditional ML pipeline

Input Features »  Output
Feature Engineering Classifier with
(Manual Extraction+Selection) (a) shallow structure
Deep learning pipeline
Deep Learning:
| features identified
nput  ———> Output .
: along with the

training process.

Feature Learning + Classifier
(End-to-End Leamning)

Figure from J. Wang et al. J. Manuf. Syst. 48, 144 (2018)



In deep learning, the neural network architectures are more complicated (“deep”)

Input data Convl

b

227X 227 X 3

/

55X 55 X 96

“kernel”

Pixels x pixels x channels

(3 for RGB)

Conv2 Conv3
o K fse Jj
13X 13 X 384
27X 27 X 256
number
of filters

AlexNet architecture

Conv4

13X 13 X 384

Conv)

13X 13 X 256

Each one of these blocks is a NN

(tensor 4 bias + activation)

Image from X.

FC6 FC7 FC8

1000

4096 4096 f

number
of classes

A. Krizhevsky et al. NeurlPS 25 (2012)
Han et al. Remote Sens. 9 (8), 848 (2017)

32



It we take each of the filters, we will see the features extracted from the dataset:

Figure 3: 96 convolutional kernels of size
11 x11 x 3 learned by the first convolutional
layer on the 224 x 224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

A. Krizhevsky et al. NeurlPS 25 (2012)

33

What Does the Network See?

Semantic dictionaries give us a fine-grained look at an
activation: what does each single neuron detect? Building
off this representation, we can also consider an activation
vector as a whole. Instead of visualizing individual neurons,
we can instead visualize the combination of neurons that

fire at a given spatial location. (Concretely, we optimize the

image to maximize the dot product of its activations with

the original activation vector.)

599. 328. 303.

Activation Vector Channels

Mini Tutornial: CNN activations

C. Olah et al. Distill (2018). DOI: 10.23915/distill.00010



https://doi.org/10.23915/distill.00010
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Back to NNIPs: crafting features vs learning representations



But, again, how to represent our data’ 39

In images, a mapping between a (N x N x 3)
image and (C) classes is well-defined:

C

— |

f [ NXNX3

(assuming the prediction of class logits)

In materials or molecules, our data is not an
image nor a sequence. Instead, our mapping is
for a set of atoms in the 3D space:

V:ZXRM 5 R

with the 3D space not well represented by an

Image.

Why images are not good enough?



A more natural way to represent the data is a graph

h o/
\

O

:
: | @
@ :

:

30

By defining a molecule or material system as a
graph,

G=(V,E)

We can initialize some features to each element
(or even use random ones):

O CH

Now we just need to learn a representation for

each atomic environment



How does a graph convolution look like in a molecule?

—)- center

- neighbors
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Layer 1 Output

A. White. Living Journal of Computational Molecular Science
https://dmol.pub (2022)



https://dmol.pub

How does a graph convolution look like in a molecule?

Graph convolution on molecule

Neural fingerprint
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N
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D. Duvenaud et al. NeurlPS 28 (2015)

In some molecular systems, the graph is simply
the connectivity graph of a molecule (covalent

bonds).

Each atom interacts with its neighbors, and a
“filter” is trained by understanding the
interactions between neighbors.

This enables us to predict properties from the

molecular graph.

Some problems with a graph-only approach:

1. Connectivity graphs do not tell us anything about

conformers (or PESes)

2. What about materials?



Let's examine how the concept of “graph convolution” work with a solid material

39



Like before, we analyze each atomic environment and create a fingerprint for them

Pairwise distances

d12
‘ di3

dig

c. \\

7
4//

-

e

A

>‘

Structural Fingerprints

40



Then, we update the representations using a specific neural network architecture

41



The whole process is called “message passing’ framework

42

What we are doing is combining the atomic

environments in the graph, just like we saw for
the CNNs.

The figure on the left shows a central atom and
its neighborhood. Atoms which are faded away
are not in the neighborhood of this central atom.

A message passing neural network takes the
initial graph and representations and creates a
node-based representation for each environment.



The architecture of an MPNN

43

Mathematically, at the layer n for the node /, the

message vector my{"+1)is given by
(n+1) _ (n) R(n)
m = Z M, (hl. ,hj ,eij)
JEN (i)

where hi(") is the representation of node i at layer

n, M, is a neural network, and N(i) is the

neighborhood of .

The new representation hi{("+1) is given by

(n+1) — (n) m(ntl)
h™" = U, (hl. , M. )

where U, i1s a neural network.

J. Gilmer et al. arXiv:1704.01212 (2017)



This concept of “graph convolution” is very similar to a CNN

CNN on image

0-0

0-1

1-1

. B . B

2-1 3-1 4-1

CNN images: B. Sanchez-Lengeling et al. Distill.pub (2021)

Image Pixels

Graph convolution on image

Graph convolution on geometry

44




Application to NNIP: the Deep Tensor Neural Network (DTNN)
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The architecture looks complicated! Let's break
it down:

OFEN

=1
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/

K. Schiitt et al. Nat. Commun. 8, 13890 (2017)




DTNN showed interpretable filters and excellent prediction of molecular properties 40

Local contribution of a test charge
(probing the NN):

Ditferent isomers of C;O5H1

Kendall rank correlation
coefficient 7= 0.969

-1,750

-1,800

—-1,850

Atomization energy (NN)

-1,900

-1.900 -1,850 -1,800 —-1,750
Atomization energy (DFT)

—-1,900 -1,850 —-1,800 -1,750

Atomization energy (kcal moI“)

K. Schiitt et al. Nat. Commun. 8, 13890 (2017)



The limitations of the previous models for performing simulations at T > 0 K

So far, the graph-based NNs have treated molecular

graphs or ground-state properties. What if we —_— F = — VI’E
wanted to perform MD simulations?

The problem with the previous NN architectures is that they mostly predict properties of a static graph or
3D structure. If the atoms move, it is not guaranteed to vary the energy continuously.

Discrete filter Continuous filter

<L <y

> >

Sk &

) ()

e =

) )
atom positions R atom positions R

K. Schiitt et al. NeurlPS 30 (2017)

47



SchNet as a continuous-filter NNIP 48

SchNet architecture

(Zl, Ce Zn) (rl, Ce rn)

The SchNet architecture is not too different from what we learned.
embedding, 64 On the image on the left, we can see:

interaction. 64 1. embedding layers, that map an atomic number to a vector.

i

, , 2. for representation learning with message
Interaction, 64

passing.

interaction, 64 3. fully connected NNs, for predicting atom-wise energies (or

atom-wise, 32 properties).

. 4.2 sum at the end, pooling all the contributions from the atoms of
shifted softplus
the systems.

atom-wise, 1

sum pooling

A IIIII

K. Schiitt et al. NeurlPS 30 (2017)



How to fit to energies and forces? 49

SchNet architecture

(Zl, Ce Zn) (I‘l, Ce l’n)

The trick to training this NN is to use information not only about
the energy of the PES, but also the forces:

embedding, 64 1 n
interaction, 64 g — /IEHE_EAVH2+/1F_2HF1_ FiHZ
4
1=0

Interaction, 64

i

Interaction, 64

Where the predicted forces can be obtained by differentiating the

atom-wise, 32 predicting energy with respect to the input coordinates:

shifted softplus

/A
atom-wise, 1 a aE
F.— — —

sum pooling l aR ;

l

A IIIII

K. Schiitt et al. NeurlPS 30 (2017)



How does it perform?

Predictions of energies + forces is
better than just energies.

Why do you think this is the

case’

Predictions of forces enables other
properties to be obtained, such as
vibrational spectra.

50

Table 3: Mean absolute errors on C-O,H{y 1somers in kcal/mol.

mean predictor

SchNet
energy energy+forces

known molecules / energy 14.89 0.52 0.36
unknown conformation forces 19.56 4.13 1.00
unknown molecules / energy 15.54 3.11 2.40
unknown conformation forces 19.15 5.71 2.18

spectrum

B DFT (PBE-TS)

\

B SchNet (PBE-TS)

0

!
200

I
400

|

I
600 800 1000 1200

frequency [cm™1]

|

1400

K. Schiitt et al. Neurl/PS 30 (2017)
K. Schiitt et al. J. Chem. Phys. 148, 241722 (2018)



Many more models were proposed in the field ol

HIP-NN PhysNet DimeNet

Forces

N
Dipole p= Z qr;
i=]

N. Lubbers et al. J. Chem. Phys 148, 241715 (2018) O. Unke and M. Meuwly. JCTC 15 (6), 3678 (2019) J. Gasteiger et al. ICLR (2020), arXiv:2003.03123
Architecture inspired in Prediction of atomic Explicit treatment of
many-body expansions charges three-body terms

There are many more models in the field nowadays. What is being improved?




First improvement: symmetry, invariance, and equivariance o2

original mirrored (some) rotation

Images are invariant to translation,
mirror (often), and rotation
(sometimes).

same dog § #al

original rotated
Force

upwards

Forces are equivariant to rotation:

they transform according to the

operation
P Force after

rotation

Molecule figure from: T. Smidt, e3nn (2021). https://e3nn.org



https://e3nn.org

Recent improvements in this area

Cormorant

B. Anderson et al. arXiv:1906.04015 (2019)

Covariant “neurons’ for
SO(3) symmetry

NequlP
1=0.1;2..: (F1y---57n)
[
an(z) Basis

Tensor Product

S. Batzner et al. Nat. Commun. 13, 2453 (2022)

E(3)-equivariant GNN

53

PaiNN

b Vj Sj Tij

VJ'|||7?ij|| < Tcut
1281

K. Schiitt et al. ICML 139 (2021)

Uses directional message-
passing and vector repr.

These models are close to the state-of-the-art for several datasets



Other improvements: many-body terms and better scaling

n,(£1 yP1 722 ,pZ)_)(eout apout)

Allegro Vi L _ 2: ikl (yihL-1 o Vik )

ik, L ik
na£21p2 e23p2

|
S &
S~
S|
e
X
N

A. Musaelian et al. arXiv:2204.05249 (2022)

3, L—1 k,L i
=V ® E w” YR

n,£1,p1 n,l2,p2 " £2,p2
keEN (7)
t t t t t t t t t
MACE m{ =3 ui (01%;07) + 3 ws (0100,00 ) 4+ D wy (008,01,
J J1,J2 J1s-esJv
1 1 A 1
|. Batatia et al. arXiv:2206.07697 (2022) A’E,lzllml — Z Rlilz (Tji)Ylan (rgz)W].(czi -

JEN (4)

The math gets complicated, but the models get more accurate (and scale better)



To summarize what we have learned so far

......

,“ ) Reference
. database(s)

HY = EW
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Regression
(“learning”)

Energies and forces
(data labels)

Structural models
(data locations)

E =% &(q

- s a
. .'c‘ "u. :"‘s‘ al .‘. . ? ." : '.‘o' ‘
. 0: “‘ c:
]
& “Exact”. but
unknown PES

A X (3N-dimensional)

Representation
I of atomic structure T

(] (descriptors)

= i
O O
Choice of Descriptor Choice of Regressor
descriptors hyperparameters regressor hyperparameters

J. Morrow et al. arXiv:2211.12484 (2022)



4. Data

How to use, construct, and validate datasets in NNIPs?

50



Machine learning needs data

For example, if we wanted to perform an MD simulation for ethanol, we we would observe that the
sampling of configuration space changes with the temperature, as expected:

100K
360 360

S
O
C>>§“ 180 f-‘-: 1801
5 R o
> iy
- i

0 180 360 O

Methyl rotor Methyl rotor Methyl rotor

O. Unke et al. Chem. Rev. 121 (16), 10142 (2021)

To train a NN force field, we have to use the right datasets for our

L . How to create data?
application of interest.



Create data as you usually would: QM, DFT, etc. o8

AIMD Ll use AIMD trajectories as dataset

G

. easy to perform

\
/

>: high cost, correlated samples

a

normal mode . displace atoms randomly along the eigenvectors of the Hessian

sampling &): easy to perform
= small distortions only
enhanced Wl explore the PES with enhanced sampling methods (e.g., metadynamics)
sampling &): better exploration of the PES
->: harder to implement, often relying on ab initio
active Ll improve the dataset over time by analyzing the uncertainties
learning &): good quality datasets, may be cheaper to produce

\
/

>): requires uncertainty metric, long process let's focus on this one



What is active learning? o9
e.g., NNIP

learn a model machine learning

model

e.g., NN-based AIMD

labeled
training set

a_—

unlabeled pool

U

|

s s — I
L /
3
~ :

> '/ \

4

select queries

oracle (e.g., human annotator)

e.g., DFT

B. Settles. Active Learning Literature Survey (2009)



Active learning requires uncertainty quantification to

. _ Energy and forces from
Select configurations via el rants sioicas e

query by committee

Separately for each condition

What is the problem of this?

identify “unlabeled” configurations

Combine data

60

sampling time

Perform (PI)MD using C-NNP
Expand into new phase points

Stabilize via biasing of disagreement

C. Schran et al. J. Chem. Phys. 153, 104105 (2020)



Examples of interesting dataset constructions: GPR, FLARE and high-entropy alloys o1

Predict

Forces

0.7

Update Estimate
Pogitions Error Call DFT

rmse (eV/A)
o
(@)

0.5
uncertainty
0.14 active learnin
0.12 0.4 J
0.10 &
0.08 ‘% 0 200 400 600
0.06 5 atoms in training set
0.04 @
0.02

J. Vandermause et al. npj Comp. Mater. 6, 20 (2020)



Examples of interesting dataset constructions: aluminum dataset from ANI potential

Training Data Set

Train New
Ensemble

System Generation

Generate random
disorder system

Quantum
Molecular Ensemble Espresso
Dynamics SaiiBling QM Data
Simulation Generation

Systems Uncertainty Systems
Estimate

62

Active Learning lteration

t-SNE

Random

disorder 40

space
.,1' - 35
z
-30 S
=
(O
O
- 25 &
\ (@)
v ~ .E
: 2 m 20 ©
Y y Q
}.ﬂ >
L 15 S
Y &
B . ot 10
\ /Q | " 1'('
“ - o . '
( o as s
" 5
§ _ - ---*’A%.
.J

J. Smith et al. Nat. Commun. 12, 1257 (2021)



Some datasets typically used out there 63

rMD17 3BPA Open Catalyst (0C20)

S. Chmiela et al. Sci. Adv. 3 (5), e1603015 (2017) D. Kovacs et al. JCTC 17 (12), 7696 (2021) L. Chanussot et al. ACS Catalysis 11, 6059 (2021)
A. Christiansen et al. MLST 1, 045018 (2020)

Small molecules with Flexible molecule sampled Adsorption energies on
their conformers at different temperatures inorganic catalysts

Remember: train-validation-test, k-fold CV, error

. There are many, many datasets...
metrics and many more.



To summarize what we have learned so far 64

Regression

(“learning”) E = Z 5] (q)

4 Reference & _
" database(s) HY = EW
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—

Energies and forces
(data labels) Y

" oA
» ‘ ey i@ ‘ ) G
P . ," “.. ". ." Y
L) Y . S
L] & “Exact”. but ]
unknown PES
A X (3N-dimensional) (] (descriptors)

Structural models Representation
(data locations) I of atomic structure T

o e
. *‘ H\II — I 1
. o Y o o
~—> o
Choice of Quality of Choice of Descriptor Choice of Regressor
data locations data labels descriptors hyperparameters regressor hyperparameters

J. Morrow et al. arXiv:2211.12484 (2022)



5. Frontiers of NNIPs

What's next for ML interatomic potentials?

05



Interesting trends in the field

Uncertainty & extrapolation

—— DFT
110y ||~ SGOML
— ACE EO REG
— ANI
—— GAP
> --- GAP EO
>
ok
O
-
L
—4204 -
—4210 A
200 - BN Training data
O 1 1 1
(b) 2 4 §)

O-H distance / A

D. Kovacs et al. JCTC 17 (12), 7696 (2021)

Challenging applications

J. Westermayr et al. Nat. Chem. 14, 914 (2022)

Better metrics & interpretability

J. Vita and D. Schwalbe-Koda (2023)
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For example: ML potentials suffer when extrapolating...

..
P

J

o



Neural networks are susceptible to adversarial attacks

+ .007 X
I Slgn(vm‘](oa £L, y))
“panda” “nematode”
57.7% confidence 8.2% confidence

03

T -+
esign(VyJ (6, z,y))
“g1ibbon”

99.3 % confidence

C. Szegedy et al. (2013), arXiv:1312.6199
|. Goodfellow et al. ICLR (2014), arXiv:1412.6572



Increasing NN robustness to adversarial attacks

m@in E iy~ |max Z(hy(x + 0),y)

0EA
/

find the NN weights

that minimize
across the whole the perturbed loss

dataset under study function

and for perturbations 9 in
the set of allowed
perturbations A

09

D. Tsipras et al. ICLR (2019)



Qualitative results of robust NNs 70

Original

primate
G PR . s AN

Nl e & ' ‘.‘\."'-‘ - '
4 . LA o
54 AT

'1" -" ‘0“

Question: how to do this for NN potentials? D. Tsipras et al. ICLR (2019)



Objective of a robust neural network regressor /1

Es, Fs come from reference
calculations in an AL loop

l

m@in Ex gp~g |Max Z(X;, Es, Fg; 0)

0EA
/

find the NN weights

that minimize
across the whole the perturbed loss

dataset under study function of the regressor

and for perturbations 9 in
the set of allowed
perturbations A

Question: how to generate the perturbed Idea: find geometries that maximize the
samples and their ground truth values? epistemic uncertainty of the NN potential



Adversarial loss depends on the uncertainty

NN committee

Input geometry

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

PES

uncertainty

adversarial attack

(2



Robust training is an active learning loop

/ database \

evaluation

attack

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

(3



Sample new points through adversarial attacks

attacks increasing the
-9 energy a bit are good

\

/ attacks towards the \

transition state are good

-1.5 -1.0 -0.5 0.0 0.5 1

I
Goals of a good adversarial attack:
e Find points of maximum uncertainty .
o o mink y z myg
e Penalize going towards crazy high energies 0 ( A, )N

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

max &

74

attacks diverging in
energy are bad

.0 1.5

(X59 E59 F5§ 0)



| oss function for adversarial attack

Construct partition function from training set:

0= ) exp -

(X,E,F) e kT

Estimate Boltzmann probability given the mean

energy from NN ensemble:

1 —E(X)

p(Xs) = 5 CXP T

The final adversarial objective then becomes

max Z(X, 5; 0) = max p(X;) - 67(X;)

0 0

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

| -
v

101'; kT — 03 — 1.0 — 3.0 10.0 30.0

A A

107 -
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103 L — I . . . —1 1\ .

kT — 03 — 1.0 — 3.0 10.0 30.0

10! -

/Q\@Q(\

105 | |- | | | / | \ | |
2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

r

(5



Adversarial attacks for 2D double well

mean energy

|Og Lade

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

® adversarial attack

past attack
O original data

>

higher E/loss

(0



How adversarial attacks look like for molecules?

20000 -
Z (X, 0; 0)
O i | | | |
1000 -
2
o:(X;)
500 - Fo
O i | | | |
0 20 40 60
Step

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

(r

100 -
50 - Ué(Xa)
O il | | | |
20 -
¥ E(X;)
O -
0 20 4IO 6IO
Step



How efficient is the active learning with this technique? /s

and 542 other

zeolite-OSDA
pairs

l gen 1

] —
Ei datasets | train MD
7,647 random N
9,845 MD ii\
’ —
train B> ? MD

D. Schwalbe-Koda et al. Nat. Commun. 12, 5104 (2021)

Tutorial: performing atomistic

adversarial attacks

7,647 random
7 Eg 0,845 MD s 92%
stable trajs. | train MD stable trajs.

4,879 NNMD ‘

97%

stable trajs.

7.647 random

80% — 0.845 MD

stable trajs. attack




Summary

What did we learn today?
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To summarize what we have learned today
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hyperparameters

J. Morrow et al. arXiv:2211.12484 (2022)



A few resources to learn more

Chemical Reviews 121 (16) (2021): Several reviews on ML for materials

Papers cited in this presentation: In-depth discussion on the advances of NNIPs and much more.

Andrew White's dmol.pub (https://dmol.pub/): interactive resources to learn more about ML,
deep learning, and their applications to molecules and materials

Michael Nielsen's online book (http://neuralnetworksanddeeplearning.com/index.html): several
explanations on the math/workings of neural networks

3bluelbrown’s videos on NNs: excellent visualizations and explanations on NNs

(https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1 67000Dx ZCJB-3pi)

|. Goodfellow et al. Deep Learning. MIT Press (2016): in-depth discussion of deep learning
theory (https://www.deeplearningbook.org/)
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