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Outline

Motivation

Machine learning learning of interatomic potentials

Learning chemistry? Artificial intelligence…
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Why global optimization is needed

Determine structure
Reduced tin-oxide, SnO2, surface

2001

2003 2017
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Accuracy
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cost

Total energy methods
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Accuracy

Computational 
cost

Total energy methods

Many-body wave function!!!!

Many-body Hamiltonian
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Accuracy

Computational 
cost

Density functional theory

Single-particle Hamiltonian

kinetic Coulomb many-body



• Perturb the structure
• Accept if potential energy decreases,

or

8Figure credit: Wikipedia

Simulation methods

Molecular dynamics:

Metropolis Monte-Carlo:



Figure credit: Wikipedia

Simulation methods

Figure credit: Python course at Aarhus University
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Computational times for DFT simulations on a supercomputer

Energy evaluation

Relaxation trajectory

Molecular dynamics (10 ns, 0.1 fs step) 

Monte-Carlo search (100 perturbations)

1 hrs

100 x 1 hrs = 4 days

10,000 x 1 hrs = 1 year

100 x 100 x 1 hrs = 1 year

100 atoms on 8 CPU cores
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Accuracy

Computational 
cost

ML

Machine learning based total energy



DFT
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ML

Machine learning based total energy

Collect structure-energy, (x,E), data at DFT level

Train “black box” to reproduce E given x 

Simulate with the “black box”

x

x

E

E

x* E*
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ML

Expected invariant behavior of “black box”

x1 E

MLx2 E

MLx3 E
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ML

Representation

v1 E

ML E

MLv1 E

x1

x2

x3

”descriptor”,
”feature”, ”feature vector”,
or ”fingerprint” 

v1

Carthesian
coordinates

Figure credit: Volker Deringer
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Two popular options for the “black box”

2007:
Artificial Neural Networks

2010:
Gaussian Process Regression
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Gaussian Process Regression: Efficient with very little data
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Gaussian Process Regression: Efficient with very little data

describes the i’th structure 

… is called: ”descriptor”, ”feature”,
”feature vector”, or ”fingerprint” 

Kernel:

… measures how similar two structures are



Let’s say we already found structure 3, 4, 5, and 6: Construct K
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Solve for model parameters and check on training data:
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Then, for structure 2 we can construct the kernel vector:
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Gaussian Process Regression

Uncertainty estimation
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Gaussian Process Regression
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Gaussian Process Regression
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Gaussian Process Regression
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From the tutorial
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2 3
4

1: Go to: mldft.com
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Two popular options for the “black box”

2007:
Artificial Neural Networks

2010:
Gaussian Process Regression
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Histogram of all interatomic distances

Histograms for each atom in molecule

In fact, both methods use: a descriptor for each atom

ML E1

ML E2

ML E3

ML E6

E
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Artificial Neural Network approach

E1

E2

E6

E
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The neuron
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The training

Update W’s to minimize Loss function

Loss function = 



Quantum 
Chemistry

DFT

Lennard-
Jones

Tight-
binding
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Accuracy

Computational 
cost

Example: structural search: 13 Pt atoms / MgO support2015:
Georgia Tech
Uzi Landman group
13 Pt atoms / MgO support
Relaxed 36 configurations
approx 3600 DFT calcs
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Accuracy

Computational 
cost

Example: structural search: 13 Pt atoms / MgO support2015:
Georgia Tech
Uzi Landman group
13 Pt atoms / MgO support
Relaxed 36 configurations
approx 3600 DFT calcs

ML

2018:
Aarhus University

1800 DFT calcs
Relaxed 3 x 600 configurations
approx 180,000 ML calcs



Monte-Carlo type search using ML: Pt13/MgO

Esben Kolsbjerg, A A Peterson, BH Phys Rev B  97, 195424 (2018)

Bottom layer:
8 atoms

2nd layer:
+ 4 atoms

3rd layer: +1 atom



Quantum 
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Accuracy

Computational 
cost

Example: structural search: 13 Pt atoms / MgO support2015:
Georgia Tech
Uzi Landman group
13 Pt atoms / MgO support
Relaxed 36 configurations
approx 3600 DFT calcs

ML

2018:
Aarhus University

1800 DFT calcs
Relaxed 3 x 600 configurations
approx 180,000 ML calcs



DFT
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Time

Active learning

ML

100 
structures

DFT

1000 
structures

1 structure

ML

DFT

1000 
structures

1 structure



Learning Evolutionary Algorithm: LEA

AARHUS                                  
UNIVERSITY                              AU

 

ML = Machine Learning

Esben Kolsbjerg, Andrew A Peterson, BH, Phys Rev B  97, 195424 (2018)
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Learning Evolutionary Algorithm: LEA

AARHUS                                  
UNIVERSITY                              AU

 

ML = Machine Learning

Esben Kolsbjerg, Andrew A Peterson, BH, Phys Rev B  97, 195424 (2018)
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Common elements in Atomistic Global Optimization: AGOX
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Christiansen et al, JCP 157, 054701 (2022)
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ML-enhanced basin-hopping 
Define a model:

Define a module that uses this model:

Give to AGOX

AGOX: ”Atomistic Global Optimization X”
Christiansen et al, JCP 157, 054701 (2022) https://gitlab.com/agox
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Structural search: Trick of relaxing in surrogate potential 

Perturb
structure

Relax
structure

Accept / 
discard 
stop?

Christiansen et al, JCP 157, 054701 (2022)
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Global optimization of first-principles energy expressions (GOFEE)
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Bisbo & BH PRL 2020, PRB 2022
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ML model:
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Acquisition function
𝑓!" = 𝐸#$% − 𝜅 ⋅ 𝜎#$%

Global optimization of first-principles energy expressions (GOFEE)
Bayesian statistics



En
er

gy

Atomic arrangement 3

Acquisition function
𝑓!" = 𝐸#$% − 𝜅 ⋅ 𝜎#$%

Evaluate with
DFT

Global optimization of first-principles energy expressions (GOFEE)

Bayesian statistics



5

SnO2(110)-(4x1)

# DFT evaluations

Results – the reduced SnO2 surface reconstruction

Bisbo & BH 
PRL 2020, PRB 2022

GOFEE =
1) Adaptive learning
2) Relaxation in Acquisition function: 𝑓!" = 𝐸#$% − 𝜅 ⋅ 𝜎#$%
3) Multiple candidates at model level, one at DFT level



Favoring low energy or high uncertainty

AARHUS                                  
UNIVERSITY                              AU

 

fitness = �(E � �)

M S Jørgensen et al., J Phys Chem A, 122, 1504 (2018)
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Machine learned potential

ML

ML

E1, E2

Artificial intelligence
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AlphaGo
Google DeepMind 2016

Quality assessment

C

C

C

C

Best move prediction

✕
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AlphaGo
Google DeepMind 2016



state Q-values in 
action spacerepresentation hidden deep

layers

Image recognition: Convolutional Neural Network

Atomistic structure learning algorithm (ASLA)



Reinforcement learning (self-build + reward)

AARHUS                                  
UNIVERSITY                              AU

 MS Jørgensen, HL Mortensen, SA Meldgaard, EL Kolsbjerg, ... J. Chem. Phys. 151, 054111 (2019)

Reward =
DFT calc

Experience replayBackpropagation

���

Template +
N atomsTemplate ε-greedy

57

=

Policy



Obtain rotational invariance via data augmentation

AARHUS                                  
UNIVERSITY                              AU

 58

Given same reward

Not strictly true under periodic 
boundary conditions, but appears to 
act as regularization

Reward 
evaluated based 
on actual DFT 
calculation



Several atom types: just add image layers – like RGB color images

AARHUS                                  
UNIVERSITY                              AU
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UNIVERSITY                              AU

 

Search for graphene: untrained agent

MS Jørgensen, HL Mortensen, SA Meldgaard, EL Kolsbjerg, ...
J. Chem. Phys. 151, 054111 (2019) 60
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Search for graphene: agent trained for 200 episodes

MS Jørgensen, HL Mortensen, SA Meldgaard, EL Kolsbjerg, ...
J. Chem. Phys. 151, 054111 (2019) 61
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Search for graphene: agent trained for 1000 episodes
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Structure of oxidized Pd(100)
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Structure of oxidized Pd(100)

Monte-Carlo
search with
cheap ML energy
predictions. ?



Train the ASLA agent for a (3x3) Pd9O6 film



Train the ASLA agent for a (3x3) Pd9O6 film
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Apply the ASLA agent to the (5x5) problem

After 1000 supervised episodes 
on (3x3) problem and 2450 
reinforcement episodes on (5x5)

Self-taught:
- positions
- atomic types
- sequence
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Apply the ASLA agent to the (5x5) problem

Forcing the build with two other sequences:

- the agent has obtained general knowledge !
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Full 3D ASLA

ASLA-2D ASLA-pseudo-3D

ASLA-3D Pt8 on graphene



Conclusion
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Machine learning takes:

1) Data
2) Clever representation
3) Model

2019: Mortensen, Christiansen, Meldgaard, Bisbo

Collaborators:
Lindsay Merte, Malmø
Edvin Lundgren, Lund
Andrew Peterson, Brown Uni
Karsten W Jacobsen, DTU
Jun Li, Tsinghua
Funding:
Danish National Research Council
VILLUM Foundation

Provides:

1) Tremendous speedup
2) Intelligent solutions

2022: Rønne, Christiansen, Brix
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Alternatively: 
asla.au.dk

2 3
4

1: Go to: mldft.com
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Application to grain boundary problems
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Application to grain boundary problems
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Eventually, the problem is solved
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Learn elements from a simpler problem
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Right after transfer – something was learnt
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Eventually, the problem is solved

78



Starting from agent trained on simpler problem
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Grain boundary

Graphene edge

Transfer converged policy

Complex

problem

Simple

problem

Henrik Lund Mortensen

1000 iterations

2500 iterations
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Layer-wise relevance propagation
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