
Materials property prediction from 
limited and multi-fidelity datasets   

 
 
 
 
 

Gian-Marco Rignanese1,2 
1 Université catholique de Louvain, Louvain-la-Neuve (Belgium) 

2 Northwestern Polytechnical University, Xi'an (China)

4th IKZ-FAIRmat Winterschool "Machine Learning in Materials Science and Crystal Growth" 
Berlin (Germany), 23-25 January 2023

FREEDOM TO RESEARCH



Many materials DB have become available online

OQMD



Each of these databases has 
its own user base and specific API

OQMD



The queries can be very different 
for asking for the same thing…

•  
 

http://www.crystallography.net/cod/result.php?formula=O2%20Si 
  

•  
 

http://www.materialsproject.org/rest/v2/materials/SiO2/vasp/structure?
API_KEY=YOUR_API_KEY 

•  
 
http://aflowlib.duke.edu/search/API/?species(Si,O),nspecies(2)



… and the responses have very different formats



A common API has been defined

• The initial release was developed by the participants of the workshops 
“Open Databases Integration for Materials Design” held at: 

◆ the Lorentz Center (October 2016) 

◆ the CECAM (June 2018 → 2022)

OPTIMADE





Thanks to OPTIMADE, it is possible to search 
many materials DBs with the same query…

OQMD



Predicting different properties requires 
very different computing time
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4.7 million properties; 57 million CPU hours; 730,000 calculations… 



How can we predict the phase stability of 
polymorphs at different temperatures?

• At T=0K: for exemple, the Cu-O system 
 
 
 
 
 
 
 
 

• At T>0K, the vibrational entropy needs to be taken into account. 
This can be done by DFPT but it is very demanding.



• Automatic parallel configuration 

• Automatic error handling 

• Perturbations fully parallelized 

• Store the results on a Database

An automatic workflow was developed



The vibrational properties 
were calculated for 1521 semiconductors

• The dataset includes: 
◆ phonon band structure 
◆ LO-TO splitting 
◆ phonon DOS 
◆ Born effective charges 
◆ dielectric tensor 
◆ derived quantities: 

ΔF, ΔEph , Cv and S 

• The dataset is openly available!

G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. van Setten, 
X. Gonze, K.A. Persson, G. Hautier, and G.-M. Rignanese, Sci. Data 5, 180065 (2018).



 

… but only for those 1521 semiconductors

The vibrational properties are 
available on the Materials Project website



This is where the power of 
machine learning becomes very handy

calculations on known crystal 
structures and predict new ones 
automatically5. 

Researchers from outside 
the original group were getting 
interested in high-throughput 
computations as well. One such 
researcher was chemical engineer 
Jens Nørskov, who started using 
them to study catalysts for break-
ing down water into hydrogen 
and oxygen6 while he was at the 
Technical University of Denmark 
in Lyngby, and later expanded the 
work as director of the SUNCAT 
Center for the computational 
study of catalysis at Stanford Uni-
versity in California. Another 
was Marzari, who was part of a 
large team developing Quantum 
Espresso: a program for quan-
tum-mechanics calculations that 
was launched7 in 2009. That is the 
code running on his mobile phone 
in the video. 

MATERIALS GENOMICS
Still, computational materials 
science did not become main-
stream until June 2011, when 
the White House announced the 
multimillion-dollar Materials 
Genome Initiative (MGI). “When 
people at the White House became 
familiar with Ceder’s work they 
got very excited,” says James War-
ren, a materials scientist at the US 
National Institute of Standards 
and Technology and executive secretary of the MGI. “There was a gen-
eral awareness that computer simulations had got to the point where 
they could have a real impact on innovation and manufacturing,” he 
says — not to mention the ‘genomics’ name, “which was evocative of 
something grand.” 

Since 2011, the initiative has invested more than US$250 million 
into software tools, standardized methods to collect and report experi-
mental data, centres for computational materials science at major uni-
versities and partnerships between universities and the business sector 
for research on specific applications. But it is unclear how far this lar-
gesse has actually advanced the science. “The initiative brought a lot 
of good things, but also some re-branding,” says Ceder. “Some groups 
started calling their research genomics this and genomics that, even 
though it had little to do with it.” 

One thing the MGI definitely did do, however, was to help Ceder 
and others realize their vision of an online database of materials prop-
erties. In late 2011, Ceder and Persson relaunched their Materials 
Genome Project as the Materials Project — having been asked by the 
White House to give up the ‘genome’ label to avoid confusion with the 
national effort. The following year, Curtarolo posted his own database, 
called AFLOWlib, based on the software he had developed at Duke8. 
And in 2013, Chris Wolverton, a materials researcher at Northwest-
ern University in Evanston, Illinois, launched the Open Quantum 
Materials Database (OQMD)9. “We borrowed the general idea from 
the Materials Project and AFLOWlib,” says Wolverton, “but our soft-
ware and data are homegrown.” 

All three of these databases share a core of around 50,000 known 

materials taken from a widely 
used experimental library, the 
Inorganic Crystal Structure Data-
base. These are solids that have 
been created at least once in a lab-
oratory and described in a paper, 
but whose electronic or magnetic 
properties may have never been 
fully tested; they are the starting 
point from which new materials 
can be derived.

Where the three databases 
differ is in the hypothetical 
materials they include. The Mate-
rials Project has relatively few, 
starting with some 15,000 com-
puted structures derived from 
Ceder’s and Persson’s research 
on lithium batteries. “We only 
include them in the database if 
we’re confident the calculations 
are accurate, and if there is a rea-
sonable chance that they can be 
made,” says Persson. Another 
130,000 or so entries are struc-
tures predicted by the Nanopo-
rous Materials Genome Center 
at the University of Minnesota in 
Minneapolis. The latter focuses 
on zeolites and metal–organic 
frameworks: sponge-like materi-
als with regularly repeating holes 
in their crystal structures that can 
trap gas molecules and could be 
used to store methane or carbon 
dioxide. 

AFLOWlib is the largest data-
base, featuring more than a mil-

lion different materials and about 100 million calculated properties. 
That’s because it also includes hundreds of thousands of hypothetical 
materials, many of which would exist for only a fraction of a second 
in the real world, says Curtarolo. “But it pays off when you want to 
predict how a material can actually be manufactured,” he says. For 
example, he is using data from AFLOWlib to study why some alloys 
can form metallic glass — a peculiar form of metal with a disordered 
microscopic structure that gives it special electric and magnetic prop-
erties. It turns out that the difference between good glass formers and 
bad ones depends on the number and energies of unstable crystal 
structures that ‘compete’ with the ground state while the alloy cools 
down10. 

Wolverton’s OQMD includes around 400,000 hypothetical 
materials, calculated by taking a list of crystal structures commonly 
observed in nature and ‘decorating’ them with elements chosen from 
almost every part of the periodic table9. It has a particularly wide 
coverage of perovskites — crystals that often display attractive prop-
erties such as superconductivity and that are being developed for use 
in solar cells as microelectronics. As the name suggests, this project 
is the most open of the three: users can download the entire database, 
not just individual search results, onto their computer. 

All of these databases are works in progress, and their curators still 
spend a good share of their time adding more compounds and refining 
the calculations — which, they admit, are far from perfect. The codes 
tend to be quite good at predicting whether a crystal is stable or not, 
but less good at predicting how it absorbs light or conducts electric-
ity — to the point of sometimes making a semiconductor look like a 

Arti!cial intelligence can help researchers to comb 
through vast numbers of materials to !nd just the 

ones they need for the application at hand.

INTELLIGENT SEARCH

Start with lab data and 
computer modelling of 

known materials.

Machine learning extracts 
common patterns.

Results guide 
prediction of new 

materials.

Researchers look for 
materials with speci!c, 
predicted properties.

Chemists try to make 
the candidates for 
real-world testing.
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One of the most crucial steps is to choose 
the features representing the atomic structures

• The aim is to transform the structure into a descriptive vector 
 
 
 
 
 

• Many methods have been proposed: 
◆ Matminer [Ward et al., Comput. Mater. Sci. 152, 60 (2018)] 

(https://hackingmaterials.lbl.gov/matminer) 
◆ Megnet [Chen et al., Chem. Mater. 31, 3564 (2019)] 

(https://github.com/materialsvirtuallab/megnet)

0.52 
0.04 
0.98 
0.44 
0.17

https://hackingmaterials.lbl.gov/matminer
https://github.com/materialsvirtuallab/megnet


Matminer

Composition 
• Element fractions 
• Mean atomic mass 
• Mean atomic row 
• Stoechiometry 
• Electronegativity 
• …

Structure 
• Space group number 
• Crystal system 
• Radial distribution function 
• Bond fractions 
• Coulomb matrix 
• …

Site 
• Radial environment 
• Motif matching 
• …



Megnet

• Graph networks allow for the representation the attributes of atoms 
 
 
 
 

• It was originally trained for the formation energy and the band gap

Property MAE

 Eform 0.028 eV/atom 
(69 640 data)

 Eg 0.33 eV 
(45 901 data)



Computationally demanding material properties 
are precisely those with little available data

The other one is the model whose predictive power 
depends on the amount of data available
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In terms of quantity, is it really Big Data?
The sorites paradox 
If a heap is reduced by a single grain at a time, the question is: 
at what exact point does it cease to be considered a heap?



Material Optimal Descriptor Network (MODNet)

• Concept: feedforward neural network with an optimal set of descriptors. 

• Idea: Feature selection by relevance-redundancy algorithm 

◆ Prior physical knowledge and constraints are taken into account by 
adopting physically-meaningful features. 

◆ This reduces the optimization space without relying on a massive 
amount of data. 

• Bonus: Novel architecture that learns on multiple properties



To be relevant, the selected features should present 
some kind of interrelation with the target property

Target Target

Feature 1 Feature 2



Pearson correlation coefficient is a measure of 
the interrelation between two variables

Positive correlation

No correlation

Negative correlation

R=1 R=0.5R=0.9

R=-0.5 R=-1R=-0.9

Perfect High Low

Low High Perfect
R=0



Pearson correlation coefficient 
presents, however, a series of limitations

R=0



In MODNet, feature selection is based on 
the Normalized Mutual Information (NMI)

• The mutual information (MI) of two random variables is a measure of 
the mutual dependence between the two variables. 
It quantifies the "amount of information” (entropy) obtained about one 
random variable through observing the other random variable. 
 
 
 
 

• Their Normalized Mutual Information  

is bounded between 0 ( )  and 1 ( )

NMI(X, Y ) =
MI(X, Y )

(H(X) + H(Y ))/2

H(X) H(Y )
MI(X,Y )

H(X|Y ) H(Y|X )

H(X,Y )

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



The feature f having the highest NMI with 
the target variable y will be chosen the first one

• This provides some understanding of the underlying physics. 
Indeed, it pinpoints the most important and complementary variables.

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



The feature f having the highest NMI with 
the target variable y will be chosen the first one

• This provides some understanding of the underlying physics. 
Indeed, it pinpoints the most important and complementary variables. 

• For instance, the vibrational entropy is found to be strongly related to 
◆ the inter-atomic bond length 
◆ the valence range of the constituent elements (ionicity of the bond).

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



• This provides some understanding of the underlying physics. 
Indeed, it pinpoints the most important and complementary variables. 

• For instance, the refractive index is found to be strongly related to 
◆ an estimation of the bandgap 
◆ the density.

The feature f having the highest NMI with 
the target variable y will be chosen the first one

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



For the next chosen features, 
redundancy should also be avoided 

• To this end, we define a relevance and redundancy RR score: given 

◆ a subset of selected features  extracted from the set   
◆ another feature f  

 
 
 
where p and c are determine the relevance/redundancy balance. 

• In practice, varying p and c dynamically seems to work better, as 
redundancy is a bigger issue with a small amount of features. 

• The selection proceeds until the number of features reaches a threshold 
(fixed arbitrarily or, better, optimized to minimize the model error).

ℱs ℱ

RR( f ) =
NMI( f, y)

[ maxfs∈ℱS (NMI( f, fs))]
p

+ c



MODNet introduces the possibility of 
learning on multiple properties simultaneously

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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How can we predict the phase stability of 
polymorphs at different temperatures?

• At T=0K: for exemple, the Cu-O system 
 
 
 
 
 
 
 
 

• At T>0K, the vibrational entropy needs to be taken into account. 
This can be done by DFPT but it is very demanding.



Early attempts with ML were based on 
RF using only chemical composition features
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[F. Legrain et al., Chem. Mater. 29, 6220 (2017)]
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Including structural features 
clearly improves the predicting power

NB: Performing feature selection on the input space has no effect on the results 
as a RF intrinsically selects optimal features while learning.
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Neural-network models perform better than 
RF approaches whatever the size of the data set

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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Feature selection is really important 
especially for small training size

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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and provides a single model for multiple properties

The joint-learning approach (m-MODNet) 
shows on average a slight improve in accuracy



In particular, it is possible to obtain curves of 
the thermodynamic properties vs. temperature



Thanks to this approach, we can build 
temperature dependent stability graphs
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MODNet performs very well 
on the curated MatBench test suite

[A. Dunn et al., npj Comput. Mater 6, 138 (2020); https://github.com/hackingmaterials/matbench]

MatBench



A probabilistic MODNet has also been developed
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A probabilistic MODNet has also been developed

• Example: refractive index [F. Naccarato et al., Phys. Rev. Mater. 3, 044602 (2019)]

[Uncertainty-toolbox: K. Tran et al., Mach. Learn. Sci. Technol. 1, 025006 (2020)]



What about the quality of the data?



What is the 
best training 

strategy?

Q&As 
“Data 

sources”

Official 
exam Q&As

Books and 
internet

Let us consider a student preparing for the theoretical driving license exam





Materials DBs contain orders of magnitude 
less high-accuracy results than low-accuracy ones.

• Obtaining computational results faster usually requires to resort to more 
important approximations and hence leads, as a general rule, to a lower 
accuracy (cost vs. accuracy trade-off). 

• Obtaining experimental results generally necessitates even more time.

Fidelity spectrum

Low High
Model accuracy & cost

Low High
Data quantity

High Low



Materials DBs contain orders of magnitude 
less high-accuracy results than low-accuracy ones.

• Obtaining computational results faster usually requires to resort to more 
important approximations and hence leads, as a general rule, to a lower 
accuracy (cost vs. accuracy trade-off). 

• Obtaining experimental results generally necessitates even more time. 

• Example: the electronic band gap
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The multi-fidelity data are 
not necessarily available for the same materials

P

E G

S

H

902 112

7

17
9

3

8

696

10

29

1

0
02

144254

1197
125668

59
83 43

97

196

4372
530

43

36

24

33

57

E → experimental 
P → DFT with PBE 
H → DFT with HSE 
S → DFT with SCAN 
G → DFT with GLLB

G ESHP
100

101

102

103

104

105

52
34

8

60
30

27
03

22
90

47
2

Total size

R
el

at
iv

e 
lo

ga
rit

hm
ic

 s
ca

le

GLLBSCANHSEPBE Expt.
R

el
at

iv
e 

lo
ga

rit
hm

ic
 s

ca
le

GLLBSCANHSEPBE Expt.

R
el

at
iv

e 
lo

ga
rit

hm
ic

 s
ca

le

GLLBSCANHSEPBE Expt.



For the band gap, the distribution is 
different between the multi-fidelity dataset
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The DFT results present systematic deviations
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By analyzing these systematic deviations, 
the data can be scaled to reduce the errors
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A machine learning model built only on 
E data has a rather limited the accuracy

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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A multi-fidelity approach was recently proposed

[C. Chen et al., Nature Computational Science 1, 46 (2022)]

Fidelity-to-state embeddingAtomic structure embedding



The accuracy clearly improves 
compared to ML on E data only

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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Recently, we tested and compared 
other approaches to exploit all the data

• Transfer learning 

• Joint learning



Recently, we tested and compared 
other approaches to exploit all the data

• Stacking Ensemble Learning



• Deep-Stacking Ensemble Learning

Recently, we tested and compared 
other approaches to exploit all the data



• Comparison of the different approaches:

Recently, we tested and compared 
other approaches to exploit all the data

[P.-P. De Breuck et al., J. Mater. Inf. 2, 10 (2022)]



• Comparison of the different approaches:

Recently, we tested and compared 
various approaches to exploit all the data

[P.-P. De Breuck et al., J. Mater. Inf. 2, 10 (2022)]



• Comparison of the different approaches:

Recently, we tested various approaches

[P.-P. De Breuck et al., J. Mater. Inf. 2, 10 (2022)]



We also introduced a denoising approach 
to exploit multi-fidelity materials properties

• We compared two different methods of transfer/curriculum learning:

[X. Liu et al., npj Computational Materials 8, 233 (2022)]

onionone-by-one

... ...

... ...

... ...

Randomly
Initiated Model

... ...

... ...

... ...

... ...E

EP

EHP

ESHP

EGSHP

SEPEPS

HSEPSEPHEPHS

PHSEPGSEHGSE PHGE PHGS

EP

PHSGE

Randomly
Initiated Model

(a) (b)

... ...

... ...

... ...

Randomly
Initiated Model

... ...

... ...

... ...

... ...E

EP

EHP

ESHP

EGSHP

SEPEPS

HSEPSEPHEPHS

PHSEPGSEHGSE PHGE PHGS

EP

PHSGE

Randomly
Initiated Model

(a) (b)



Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• All possible path were considered for the one-by-one training approach

[X. Liu et al., npj Computational Materials 8, 233 (2022)]P
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Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• All possible path were considered for the one-by-one training approach

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• All possible path were considered for the onion training approach

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• All possible path were considered for the onion training approach

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• The onion training approach is the best on average and it is especially 
good when the sequence is in increasing fidelity of the data. 

[X. Liu et al., npj Computational Materials 8, 233 (2022)]



Recently, we introduced a denoising approach 
to exploit multi-fidelity materials properties

• The denoising procedure can thus be applied...
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[X. Liu et al., npj Computational Materials 8, 233 (2022)]



The effect of the denoising is quite remarkable...
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The accuracy is further improved 
compared to the previous multi-fidelity approach

[X. Liu et al., npj Computational Materials 8, 233 (2022)]
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To assess the generality of the procedure, 
we further apply it using MODNet

[X. Liu et al., npj Computational Materials 8, 233 (2022)]



Take-home message

• MODNet (Material Optimal Descriptor Network) has been proposed to 
deal with small datasets. 

• A method to take full advantage of the availability of multi-fidelity data 
has also been presented. It is based on: 

◆ an appropriate combination of all the data into a training sequence 
◆ a simple denoising procedure. 

• Both approaches provide a sensible way to improve the results that can 
be achieved when limited and multi-fidelity data are available (which is 
particularly the case in materials science).


