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Artificial intelligence

Narrow AI: The theory and development of 
computer systems that perform tasks normally 
associated to human intelligence such as 
perceiving, classifying, learning, abstracting, 
reasoning, and/or acting

General AI: Full autonomy

Few bits of taxonomy

https://youtu.be/OpSmCKe27WE



  

Artificial intelligence

Narrow AI: The theory and development of 
computer systems that perform tasks normally 
associated to human intelligence such as 
perceiving, classifying, learning, abstracting, 
reasoning, and/or acting

General AI: Full autonomy

Few bits of taxonomy (beware of embrace the platypus)



  

Few bits of taxonomy

Artificial intelligence, the three waves

John Launchbury, Director I2O, DARPA https://www.youtube.com/watch?v=-O01G3tSYpU

(The past)
Handcrafted reasoning
Expert systems, goal trees, if-then rules

Perceiving
Learning

Abstracting
Reasoning



  

Few bits of taxonomy

Artificial intelligence, the three waves

John Launchbury, Director I2O, DARPA https://www.youtube.com/watch?v=-O01G3tSYpU

Perceiving
Learning

Abstracting
Reasoning

(The present)
Statistical learning

(The past)
Handcrafted reasoning
Expert systems, goal trees, if-then rules

Perceiving
Learning

Abstracting
Reasoning

Perceiving
Learning

Abstracting
Reasoning

(The future)
Contextual adaptation
E.g., Neural-symbolic learning and reasoning



  

Few bits of taxonomy

Artificial intelligence

Exploratory analysis
(Descriptive induction)
gives insight and may lead to hypotheses

“Finding the question is often more 
important than finding the answer” 
(John Tukey)  

Confirmatory analysis
(Predictive induction)
tools that one can use to test ideas 



  

Few bits of taxonomy

Artificial intelligence

Exploratory analysis
(Descriptive induction)
gives insight and may lead to hypotheses

- clustering
- dimension reduction
- subgroup discovery

Confirmatory analysis
(Predictive induction)
tools that one can use to test ideas 

- regression
- classification



  

Few bits of taxonomy

Artificial intelligence

Machine learning

Statistical learning algorithms.
Learning = improving with more data.
Regularized regression



  

Few bits of taxonomy

Artificial intelligence

Machine learning

Reinforcement 
obtaining rewards

Unsupervised
finding structure

Supervised 
predicting labels 



  

About terminology: (big-)data-driven science

Jim Gray: The 4th Paradigm, Data Intensive Discovery, edited by Hey, Tansley, and Tolle, Microsoft Research (2007)



  

(Orbital period)² = C (orbit's major axis)³

Suppose to know the trajectories of all planets in the solar system, 
- from accurate observations (experiment), or
- by numerically integrating general-relativity equations 
(i.e., the highest level of theory)

Data 
(collected by 
Tycho Brahe)

Statistical learning
(performed by 

Johannes Kepler)

Physical law
(assessed by 
Isaac Newton)

Science is always data driven



  

Ga=69.7    Ge=72.6

Science is always data driven

Mendeleev's 1871 periodic table



  

About terminology: (big-)data-centric science

Jim Gray: The 4th Paradigm, Data Intensive Discovery, edited by Hey, Tansley, and Tolle, Microsoft Research (2007)

See: Scheffler et al., 
FAIR data enabling 

new horizons 
for materials research, 

Nature 2022

See: Scheffler et al., 
FAIR data enabling 

new horizons 
for materials research, 

Nature 2022



  

Year Breakthroughs in AI Datasets (First Available) Algorithms (First Proposed)

1994 Human-level read-speech recognition Spoken Wall Street Journal articles and 
other texts (1991)

Hidden Markov Model (1984)

1997 IBM Deep Blue defeated Garry 
Kasparov

700,000 Grandmaster chess games, aka 
“The Extended Book” (1991)

Negascout planning 
algorithm (1983)

2005 Google’s Arabic- and Chinese-to-English
translation

1.8 trillion tokens from Google Web and
News pages (collected in 2005)

Statistical machine translation
algorithm (1988)

2011 IBM Watson became the world 
Jeopardy! champion

8.6 million documents from Wikipedia, 
Wiktionary, Wikiquote, and Project
Gutenberg (updated in 2010)

Mixture-of-Experts algorithm 
(1991)

2014 Google’s GoogleNet object classification 
at near-human performance

ImageNet corpus of 1.5 million labeled
images and 1,000 object categories (2010)

Convolutional neural network
algorithm (1989)

2015 Google’s Deepmind achieved human 
parity in playing 29 Atari games by 
learning general control from video

Arcade Learning Environment dataset of
over 50 Atari games (2013)

Q-learning algorithm (1992)

Average No. of Years to Breakthrough 3 years 18 years

Data vs algorithm driven breakthroughs

Source: V. Gadepally Artificial Intelligence and Machine Learning, https://youtu.be/t4K6lney7Zw



  

Logical flow-chart

(Annotated) Data !

Features / descriptors / representations

Training algorithm: parameters vs hyperparameters.
Training metrics

Model selection  
Cross-validation metrics

Test

Statistical learning in practice

See the virtual AI full course
https://www.fair-di.eu/fairmat/outreach/materials

for video lectures and hands-on notebooks

See the virtual AI full course
https://www.fair-di.eu/fairmat/outreach/materials

for video lectures and hands-on notebooks



https://nomad-lab.eu/

FAIR since 2014

Raw input and outputs from 
atomistic simulation codes

The NOMAD Laboratory - https://nomad-lab.eu/



  

Metadata for computational materials science

Atomistic-simulation code

Input structure
- Coordinates
  Zi   xi yi zi 
- Cell vectors
- (Topology)

Input model
- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

- Code name
- Version
- Libraries

Output
- Total energy
- Forces
- Electron density
- Electrostatic pot.
- El. band structure
- Self energy
- ...

- Uploader
- Date
- Location



  

Input structure
- Coordinates
- Cell vectors
- (Topology)

Input model
- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

- Code name
- Version
- Libraries

Output
- Total energy
- Forces
- Electron density
- Electrostatic potential
- Electronic band structure
- Self energy

NOMAD Metainfo



  

Quantitative  Regression→
Discrete
Continuous (including scalars, vectors/arrays and matrices/tensors)

Categorical (Qualitative)  Classification→
(Binary)
Nominal

According to S. S. Stevens “On the Theory of Scales of Measurement” (Science, 1946, jstor 1671815):
Nominal labels categories (order has no meaning) [Classification]
Ordinal defines a rank (intervals have no meaning) [Classification]

Type of variables (both features and targets)



  

Quantitative  Regression→
Discrete
Continuous (including scalars, vectors/arrays and matrices/tensors)

Categorical (Qualitative)  Classification→
(Binary)
Nominal

According to S. S. Stevens “On the Theory of Scales of Measurement” (Science, 1946, jstor 1671815):
Nominal labels categories (order has no meaning) [Classification]
Ordinal defines a rank (intervals have no meaning) [Classification]
Interval has values of equal intervals that mean something (arbitrary zero) [Regression]
Ratio same as interval except that the zero means: does not exist [Regression]
Cardinal used for counting (“how many?”) [Class./Regr.]

Type of variables (both features and targets)



  

Property = P ( model1, model2, …)

model1(representation1, representation2, …)  model2(…)

representation1(descriptor1, descriptor2, …) representation2(...)

descriptor1 [feature1, feature2, … ] descriptor2[…] 

feature1(primary_feature1, primary_feature2) feature2(…)
● Descriptors aka fingerprints
● Primary features in materials science: 

Coordinates and physical-chemical properties of chemical elements 
material / data point i  {→ Ri,Zi}

Statistical learning: features, descriptors, and more

Onat et al. JCP 2020 doi: 10.1063/5.0016005; 
see also Ghiringhelli et al. PRL 2015 doi:10.1103/PhysRevLett.114.105503, Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115



  

Few bits of taxonomy

Machine learning

Representation learning

Learning algorithms that learn their 
representation and the predictive model.
- symbolic regression
- deep learning

Artificial intelligence



  

(i) Invariance: descriptors should be invariant under symmetry operations: permutation of atoms 
and translation and rotation of structure.
(ii) Sensitivity (local stability): small changes in the atomic positions should result in proportional 
changes in the descriptor, and vice versa.
(iii) Differentiability: having continuous functions that are differentiable.
(iv) Global Uniqueness: the mapping of the descriptor should be unique for a given input atomic 
environment (i.e. the mapping is injective).
(v) Dimensionality: the dimension of the spanned hyper-dimensional space of the descriptor should 
be sufficient to ensure uniqueness, but not larger.
(vi) Scalability: ideally, descriptors should be easily generalized to any system or structure with a 
preference to have no limitations on number of elements, atoms, or properties.
(vii) Complexity: to have a low computational cost so the method can be fast enough to scale to the 
required size of the simulations and to be used in high-throughput screening of big-data.
(viii) Interpretability: features of the encoding can be mapped directly to structural or material 
properties for easy interpretation of results.

The prima donna: the descriptor

Onat et al. JCP 2020 doi: 10.1063/5.0016005; 
see also Ghiringhelli et al. PRL 2015 doi:10.1103/PhysRevLett.114.105503, Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115



  

Linear 4-blocks periodic polymers. 
7 blocks: CH2, SiF2, SiCl2, GeF2, GeCl2, SnF2, SnCl2 
Descriptor: 20 dimensions [# building blocks of type i, of ii pairs, of iii triplets]

Pilania, Wang, …, and Ramprasad, Scientific Reports 3, 2810 (2013). DOI: 10.1038/srep02810

Statistical learning: features, descriptors, and more

Isayev, …, and Curtarolo, 
Chemistry of Materials 27, 735 (2015)

DOI: 10.1021/cm503507h



  

Few bits of taxonomy

Artificial intelligence

Machine learning

Reinforcement 
obtaining rewards

Unsupervised
finding structure

Supervised 
predicting labels 



  

Supervised statistical learning: prediction vs inference
Estimating f such that the target Y is expressed as:

Error not depending on X

Prediction

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)

E.g., (multi)linear model:



  

(i) Invariance: descriptors should be invariant under symmetry operations: permutation of atoms and translation 
and rotation of structure.
(ii) Sensitivity (local stability): small changes in the atomic positions should result in proportional changes in the 
descriptor, and vice versa.
(iii) Differentiability: having continuous functions that are differentiable.
(iv) Global Uniqueness: the mapping of the descriptor should be unique for a given input atomic environment 
(i.e. the mapping is injective).
(v) Dimensionality: the dimension of the spanned hyper-dimensional space of the descriptor should be sufficient 
to ensure uniqueness, but not larger.

(vi) Scalability: ideally, descriptors should be easily generalized to any system or structure with a preference to 
have no limitations on number of elements, atoms, or properties.
(vii) Complexity: to have a low computational cost so the method can be fast enough to scale to the required size 
of the simulations and to be used in high-throughput screening of big-data.
(viii) Discrete Mapping: always map to the same hyperdimensional space with constant size feature sets, 
regardless of the input atomic environment

(ix) Interpretability: features of the encoding can be mapped directly to structural or material properties for easy 
interpretation of results.

The prima donna: the descriptor

Onat et al. JCP 2020 doi: 10.1063/5.0016005; see also Ghiringhelli et al. PRL 2015 doi:10.1103/PhysRevLett.114.105503,  
Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115



  

Inference (interpretation)
● Which features are associated with the target?
● What is the relationship between the target and each feature?
● Can the relationship between the target Y and each feature be adequately summarized 

using a linear equation, or is the relationship more complicated?  

Supervised statistical learning: prediction vs inference
Estimating f such that the target Y is expressed as:

Error not depending on X

Prediction

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)

E.g., (multi)linear model:



  

Supervised statistical learning: quality of the fit

Overfitting
Underfitting

Irreducible error

Test

Training

The quality of the fit is measured on test data (not used for training)

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)



  

Depends on training sets Inherent to model

Supervised statistical learning: Bias/variance trade-off

(Test) MSE

Variance

Bias

Irreducible error



  

H
0
 ~ 500 km/s/Mpc

Do not snub linear fits!
Hypothesis: the recession velocity of galaxies depends linearly on their distance. 
V = H

0
·d

H
0
 ~ 500 km/s/Mpc

/



  

Supervised statistical learning: Bias/variance trade-off

(Test) Mean Squared Error

Variance

Bias

Irreducible error



  

Supervised statistical learning: Bias/variance trade-off



  

Supervised statistical learning: Learning metrics
Regression: (Root) Mean Squared Error

Classification:

Misclassification error

1 if argument is true



  

Regularization
Prefer “lower complexity” in the solution

p-norms:

The essence of learning: Regularization

norm



  

Cross validation 
assessing the values of hyperparameters: model selection.
● Fix values of hyperparameters
● Split data into training and validation. Train and assess performance on test data
● Repeat over several training vs validation splits. Average performance over splits.
● Optimize hyperparameters (grid search, stochastic sampling) 

  → select model with optimal values of the hyperparameters

Supervised statistical learning: model selection
Hyperparameters
Let’s assume a model class expressed as a sum over Gaussian (basis) functions:



  Ouyang, Ahmetcik et al., J Phys Materials (2019)
DOI: 10.1088/2515-7639/ab077b.

Regression: analysing results
95th percentile
RMSE
75th percentile, 3rd quartile
MAE
Median, 50th percentile
25th percentile, 1st quartile
5th percentile

The error metric for the analysis does not need to be the (root) 
mean squared error, (R)MSE. 
Other interesting metrics: Mean absolute error (MAE), 
median (50th percentile), other percentiles.
Recommendation: use more statistic than just the center 
(average or median)

Box and violin plots

Sutton et al., npj Comput Materials (2019)
10.1038/s41524-019-0239-3.



  

Classification: analysing results

True Positives
(TP)

False Negatives
(FN)

Type I errors

False Positives
(FP)

Type II errors

True Negatives
(TN)

Predicted class

Ac
tu

al
 c

la
ss

Accuracy = (TP + TN) / All
Precision = TP / (TP+FP)
Sensitivity = TP / (TP+FN)
Specificity = TN / (TN+FP)

E.g.
Positive: is a metal

Positive Negative

Po
si

tiv
e

N
eg

at
iv

e



  

Few bits of taxonomy

Artificial intelligence

Machine learning

Reinforcement 
obtaining rewards

Unsupervised
finding structureSupervised 

predicting labels 



  

Unsupervised learning looking from space

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342

D
at

a 
po

in
ts

Features Features

D
at

a 
po

in
ts

d

d

Representation

Prototypes / 
Archetypes



  

Unsupervised learning looking from space

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342
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Unsupervised learning looking from space

minimize

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342
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Features Features
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“=” only if rank of X is (at most) d“=” only if rank of X is (at most) d



  

Unsupervised learning looking from space

As many d as necessary:
Dimension reduction

minimize

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342
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Unsupervised learning looking from space

As many d as necessary:
Dimension reduction

Only one d:
(centroid-based) cluster analysisminimize

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342
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Unsupervised learning looking from space

As many d as necessary:
Dimension reduction

Only one d:
(centroid-based) cluster analysis

+

+minimize

Leland McInnes, A Bluffer's Guide to Dimension Reduction  https://youtu.be/9iol3Lk6kyU
Udell, Horn Zadell, Boyd, Generalized low rank models  2016 arXiv: 1410.0342
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Few bits of taxonomy

Artificial intelligence

Machine learning

Reinforcement 
obtaining rewards

Unsupervised
finding structure

Supervised 
predicting labels 



  

Reinforcement learning

See e.g.: 
Jørgensen et al., JCP 2019 doi: https://doi.org/10.1063/1.5108871

“A supervised learning starting which builds its own training dataset starting from no data”. 
The agent changes its state by taking actions: i.e., by exploring or exploiting the environment, on the basis 
of expected reward and policy. On the basis of the feedback from the environment (actual rewards or 
punishments), the model is updated.



  

Few bits of taxonomy

Artificial intelligence

Machine learning
Unsupervised
finding structureSupervised 

predicting labels 

Reinforcement 
obtaining rewards

Adversarial /
generative



  

Few bits of taxonomy

Artificial intelligence

Machine learning
Unsupervised
finding structureSupervised 

predicting labels 

Reinforcement 
obtaining rewards

Adversarial /
generative



  

Applications in materials science, an overview
Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics
Predicting properties from (ensemble of) configurations – surrogate models
Interpreting measurements, e.g., microscopy data 

Materials design 
Structure-oriented design
Elements-oriented design
Inverse design ( Workflow design / Active learning )

The challenges
Small data
Reliability/Accountability



  

Applications in materials science, an overview
Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics
Predicting properties from (ensemble of) configurations – surrogate models
Interpreting measurements, e.g., microscopy data 

Materials design 
Structure-oriented design
Elements-oriented design
Inverse design ( Workflow design / Active learning )

The challenges
Small data
Reliability/Accountability

I - An AI may not injure a human being 
or, through inaction, allow a 
human being to come to harm.
II - An AI must obey orders given it by 
human beings except where such 
orders would conflict with the 
First Law.



  

Applications in materials science, an overview
Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics
Predicting properties from (ensemble of) configurations – surrogate models
Interpreting measurements, e.g., microscopy data 

Materials design 
Structure-oriented design
Elements-oriented design
Inverse design ( Workflow design / Active learning )

The challenges
Small data
Reliability/Accountability
Interpretability/Explainability



  

Infrastructure
NOMAD and FAIRmat Markus Scheidgen

When (initial) data are scarce
Active and reinforcement learning Bjørk Hammer
Multi-fidelity learning Gian-Marco Rignanese
Bayesian inference and optimization Kentaro Kutsukake 
Experiment design Sergei Kalinin

Learning and exploiting interatomic potentials
Neural-network based Daniel Schwalbe Koda 
Kernel based Volker Deringer

AI algorithms in the future lectures
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