

NOVEL MATERIALS DISCOVERY

4th IKZ-FAIRmat winter school Machine learning in materials science and crystal growth January 23-25, 2023 – Berlin, Germany

Artificial intelligence

Narrow AI: The theory and development of computer systems that perform tasks normally associated to human intelligence such as perceiving, *classifying*, *learning*, *abstracting*, *reasoning*, and/or acting

General AI: Full autonomy

Ben Goertzel #103 Lex Fridman

https://youtu.be/OpSmCKe27WE

Few bits of taxonomy (beware of embrace the platypus)

Artificial intelligence

Narrow AI: The theory and development of computer systems that perform tasks normally associated to human intelligence such as perceiving, *classifying*, *learning*, *abstracting*, *reasoning*, and/or acting

General AI: Full autonomy

Artificial intelligence, the three waves

(The past) Handcrafted reasoning Expert systems, goal trees, if-then rules

Perceiving		
Learning		
Abstracting		
Reasoning		

John Launchbury, Director I2O, DARPA https://www.youtube.com/watch?v=-O01G3tSYpU

Artificial intelligence, the three waves

(The past) Handcrafted reasoning Expert systems, goal trees, if-then rules	Perceiving Learning Abstracting Reasoning
(The present) Statistical learning	Perceiving Learning Abstracting Reasoning
(The future) Contextual adaptation E.g., Neural-symbolic learning and reasoning	Perceiving Learning Abstracting Reasoning

John Launchbury, Director I2O, DARPA https://www.youtube.com/watch?v=-O01G3tSYpU

Artificial intelligence

Exploratory analysis (Descriptive induction)

gives insight and may lead to hypotheses

"Finding the question is often more important than finding the answer" (John Tukey)

Confirmatory analysis (Predictive induction)

tools that one can use to test ideas

Artificial intelligence

Exploratory analysis (Descriptive induction)

gives insight and may lead to hypotheses

- clustering
- dimension reduction
- subgroup discovery

Confirmatory analysis (Predictive induction)

tools that one can use to test ideas

- regression
- classification

Artificial intelligence

Machine learning

Statistical learning algorithms. Learning = improving with more data. Regularized regression

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement

obtaining *rewards*

About terminology: (big-)data-driven science

Jim Gray: The 4th Paradigm, Data Intensive Discovery, edited by Hey, Tansley, and Tolle, Microsoft Research (2007)

Science is always data driven

Suppose to know the trajectories of all planets in the solar system,
from accurate observations (experiment), or
by numerically integrating general-relativity equations
(i.e., the highest level of theory)

(Orbital period)² = C (orbit's major axis)³

Data (collected by Tycho Brahe)

Statistical learning (performed by Johannes Kepler)

> Physical law (assessed by Isaac Newton)

Mendeleev's **1871** periodic table

Reihen	Gruppe I.	Gruppe II.	Gruppe III.	Gruppe IV.	Gruppe V.	Gruppe VI.	Gruppe VII.	Gruppe VIII.
eib	l —	-	_	RH⁴	RH ³	RH^2	RH	_
я	R ² O	RO	R^2O^3	RO^2	R^2O^5	RO ³	R ² O ⁷	RO ⁴
1	H=1							
2	Li=7	Be=9.4	B=11	C=12	N=14	O=16	F=19	
3	Na=23	Mg=24	Al=27.3	Si=28	P=31	S=32	Cl=35.5	
4	K=39	Ca=40	-=44	Ti=48	V=51	Cr=52	Mn=55	Fe=56, Co=59,
5	(Cu=63)	Zn=65	-=68	-=72	As=75	Se=78	Br=80	Ni=59, Cu=63.
6	Rb=85	Sr=87	?Yt=88	Zr=90	Nb=94	Mo=96	-=100	Ru=104, Rh=104,
7	(Ag=108)	Cd=1	Ga=69.7	Ge=72	2.6 b=122	Te=125	J=127	Pd=106, Ag=108.
8	Cs=133	Ba=137	?Di=138	?Ce=140	_	_	-	
9	()	_	_	_	_	-	-	
10	-	_	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197,
								Pt=198, Au=199.
11	(Au=199)	Hg=200	T1=204	Pb=207	Bi=208	-	-	
12	—	—	—	Th=231	-	U=240	-	

About terminology: (big-)data-<u>centric</u> science

Jim Gray: The 4th Paradigm, Data Intensive Discovery, edited by Hey, Tansley, and Tolle, Microsoft Research (2007)

Data vs algorithm driven breakthroughs

Year	Breakthroughs in Al	Datasets (First Available)	Algorithms (First Proposed)
1994	Human-level read-speech recognition	Spoken Wall Street Journal articles and other texts (1991)	Hidden Markov Model (1984)
1997	IBM Deep Blue defeated Garry Kasparov	700,000 Grandmaster chess games, aka "The Extended Book" (1991)	Negascout planning algorithm (1983)
2005	Google's Arabic- and Chinese-to-English translation	1.8 trillion tokens from Google Web and News pages (collected in 2005)	Statistical machine translation algorithm (1988)
2011	IBM Watson became the world Jeopardy! champion	8.6 million documents from Wikipedia, Wiktionary, Wikiquote, and Project Gutenberg (updated in 2010)	Mixture-of-Experts algorithm (1991)
2014	Google's GoogleNet object classification at near-human performance	ImageNet corpus of 1.5 million labeled images and 1,000 object categories (2010)	Convolutional neural network algorithm (1989)
2015	Google's Deepmind achieved human parity in playing 29 Atari games by learning general control from video	Arcade Learning Environment dataset of over 50 Atari games (2013)	Q-learning algorithm (1992)
Average N	lo. of Years to Breakthrough	3 years	18 years

Source: V. Gadepally Artificial Intelligence and Machine Learning, https://youtu.be/t4K6lney7Zw

Statistical learning in practice

Logical flow-chart

(Annotated) Data !

Features / descriptors / representations

Training algorithm: parameters vs hyperparameters. Training metrics

Model selection Cross-validation metrics

Test

See the virtual AI full course https://www.fair-di.eu/fairmat/outreach/materials for video lectures and hands-on notebooks

The NOMAD Laboratory - https://nomad-lab.eu/

Metadata for computational materials science

Atomistic-simulation code

NOVEL MATERIALS DISCOVERY

IOMAD

- Date
- Location

- Code name
- Version
- Libraries

<u>Output</u>

- Total energy
- Forces

. . .

- Electron density
- Electrostatic pot.
- El. band structure
- Self energy

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

NOMAD Metainfo

NOVEL MATERIALS DISCOVERY

<u>Input structure</u> - Coordinates

- Cell vectors

- (Topology)

- Code name

- Version

- Libraries

Input model

- xc treatment / force field
- Relativity treatment
- Basis set
- Numerical integr. settings

<u>Output</u>

- Total energy

- Forces

- Electron density
- Electrostatic potential
- Electronic band structure
- Self energy

Type of variables (both features and targets)

Quantitative → Regression

Discrete

Continuous (including scalars, vectors/arrays and matrices/tensors)

Categorical (Qualitative) → Classification (Binary) Nominal

According to S. S. Stevens "On the Theory of Scales of Measurement" (Science, 1946, jstor 1671815):Nominal labels categories (order has no meaning)[Classification]Ordinal defines a rank (intervals have no meaning)[Classification]

Type of variables (both features and targets)

Quantitative → Regression

Discrete

Continuous (including scalars, vectors/arrays and matrices/tensors)

Categorical (Qualitative) → Classification (Binary) Nominal

According to S. S. Stevens "On the Theory of Scales of Measurement" (Science, 1946, jstor 1671815):Nominallabels categories (order has no meaning)[Classification]Ordinaldefines a rank (intervals have no meaning)[Classification]Intervalhas values of equal intervals that mean something (arbitrary zero) [Regression]Ratiosame as interval except that the zero means: does not exist[Regression]Cardinalused for counting ("how many?")[Class./Regr.]

Statistical learning: features, descriptors, and more

Coordinates and physical-chemical properties of chemical elements material / data point $i \rightarrow \{R_i, Z_i\}$

Onat et al. JCP 2020 doi: 10.1063/5.0016005;

see also Ghiringhelli et al. PRL 2015 doi:10.1103/PhysRevLett.114.105503, Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115

Artificial intelligence

Machine learning

Representation learning

Learning algorithms that learn their representation and the predictive model. - symbolic regression - deep learning

The prima donna: the descriptor

- (i) **Invariance**: descriptors should be invariant under symmetry operations: permutation of atoms and translation and rotation of structure.
- (ii) **Sensitivity** (local stability): small changes in the atomic positions should result in *proportional* changes in the descriptor, and vice versa.
- (iii) **Differentiability**: having continuous functions that are differentiable.
- (iv) **Global Uniqueness**: the mapping of the descriptor should be unique for a given input atomic environment (i.e. the mapping is injective).
- (v) **Dimensionality**: the dimension of the spanned hyper-dimensional space of the descriptor should be sufficient to ensure uniqueness, but not larger.
- (vi) **Scalability**: ideally, descriptors should be easily generalized to any system or structure with a preference to have no limitations on number of elements, atoms, or properties.
- (vii) **Complexity**: to have a low computational cost so the method can be fast enough to scale to the required size of the simulations and to be used in high-throughput screening of big-data.
- (viii) **Interpretability**: features of the encoding can be mapped directly to structural or material properties for *easy* interpretation of results.

Onat *et al.* JCP 2020 doi: 10.1063/5.0016005; see also Ghiringhelli *et al.* PRL 2015 doi:10.1103/PhysRevLett.114.105503, Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115

Statistical learning: features, descriptors, and more

Linear 4-blocks periodic polymers.

7 blocks: CH₂, SiF₂, SiCl₂, GeF₂, GeCl₂, SnF₂, SnCl₂

Descriptor: 20 dimensions [# building blocks of type i, of ii pairs, of iii triplets]

Pilania, Wang, ..., and Ramprasad, Scientific Reports 3, 2810 (2013). DOI: 10.1038/srep02810

Isayev, ..., and Curtarolo, Chemistry of Materials 27, 735 (2015) DOI: 10.1021/cm503507h

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement

obtaining *rewards*

Supervised statistical learning: prediction vs inference

Estimating *f* such that the target *Y* is expressed as:

 $Y = f(X) + \underbrace{\epsilon} \longrightarrow \text{Error } \underline{\text{not}} \text{ depending on } X$ $\downarrow X = (X_1, X_2, \dots, X_p)$

E.g., (multi)linear model: $Y = \sum_{i}^{p} c_{i}X_{i} + \epsilon$

Prediction $\hat{Y} = \hat{f}(X)$ $E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2 = \underbrace{[f(X) - \hat{f}(X)]^2}_{\text{Reducible}} + \underbrace{\operatorname{Var}(\epsilon)}_{\text{Irreducible}}$

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)

The prima donna: the descriptor

- (i) **Invariance**: descriptors should be invariant under symmetry operations: permutation of atoms and translation and rotation of structure.
- (ii) **Sensitivity** (local stability): small changes in the atomic positions should result in *proportional* changes in the descriptor, and vice versa.
- (iii) **Differentiability**: having continuous functions that are differentiable.
- (iv) **Global Uniqueness**: the mapping of the descriptor should be unique for a given input atomic environment (i.e. the mapping is injective).
- (v) **Dimensionality**: the dimension of the spanned hyper-dimensional space of the descriptor should be sufficient to ensure uniqueness, but not larger.
- (vi) **Scalability**: ideally, descriptors should be easily generalized to any system or structure with a preference to have no limitations on number of elements, atoms, or properties.
- (vii) **Complexity**: to have a low computational cost so the method can be fast enough to scale to the required size of the simulations and to be used in high-throughput screening of big-data.
- (viii) **Discrete Mapping**: always map to the same hyperdimensional space with constant size feature sets, regardless of the input atomic environment
- (ix) **Interpretability**: features of the encoding can be mapped directly to structural or material properties for *easy* interpretation of results.
- Onat *et al.* JCP 2020 doi: 10.1063/5.0016005; see also Ghiringhelli *et al.* PRL 2015 doi:10.1103/PhysRevLett.114.105503, Bártok et al., PRB 2013 doi: 10.1103/PhysRevB.87.184115

Supervised statistical learning: prediction vs inference

Estimating *f* such that the target *Y* is expressed as:

 $Y = f(X) + \underbrace{\epsilon} \longrightarrow \text{Error } \underline{\text{not}} \text{ depending on } X$ $\downarrow X = (X_1, X_2, \dots, X_p)$

E.g., (multi)linear model: $Y = \sum_{i}^{p} c_{i}X_{i} + \epsilon$

Prediction $\hat{Y} = \hat{f}(X)$

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2 = [f(X) - \hat{f}(X)]^2 + Var(\epsilon)$$

Reducible

Irreducible

Inference (interpretation)

- Which features are associated with the target?
- What is the relationship between the target and each feature?
- Can the relationship between the target *Y* and each feature be adequately summarized using a linear equation, or is the relationship more complicated?

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)

Supervised statistical learning: quality of the fit

James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer (2013)

Supervised statistical learning: Bias/variance trade-off

Inherent to model

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).$$

Depends on training sets

Do not snub linear fits!

Hypothesis: the recession velocity of galaxies depends linearly on their distance. $V = H_0 \cdot d$

Supervised statistical learning: Bias/variance trade-off

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).$$

Supervised statistical learning: Bias/variance trade-off

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).$$

Supervised statistical learning: Learning metrics

Regression: (Root) Mean Squared Error

Classification:

Misclassification error

 $\frac{1}{N}\sum_{i}^{N}I(y_{i}\neq\hat{y}_{i})$ 1 if argument is true

The essence of learning: Regularization

$$\underset{\boldsymbol{c} \in \mathbb{R}^{M}}{\operatorname{argmin}} \sum_{j=1}^{N} \left(P_{j} - \sum_{l=1}^{M} d_{j,l} c_{l} \right)^{2} = \underset{\boldsymbol{c} \in \mathbb{R}^{M}}{\operatorname{argmin}} \|\boldsymbol{P} - \boldsymbol{D}\boldsymbol{c}\|_{2}^{2}$$

$$\ell_{2} \operatorname{norm}$$

p-norms:
$$\|\mathbf{x}\|_p = \left(\sum_i^N |x_i|^p\right)^{\overline{p}}$$

Regularization

Prefer "lower complexity" in the solution

 $\operatorname*{argmin}_{\boldsymbol{c} \in \mathbb{R}^M} \|\boldsymbol{P} - \boldsymbol{D}\boldsymbol{c}\|_2^2 + \lambda \|\boldsymbol{c}\|_2^2$

Supervised statistical learning: model selection

Hyperparameters

Let's assume a model class expressed as a sum over Gaussian (basis) functions:

$$P(\boldsymbol{d}) = \sum_{i=1}^{N} c_{i} \exp(-\|\boldsymbol{d}_{i} - \boldsymbol{d}\|_{2}^{2}/2\sigma^{2})$$

argmin
$$\sum_{c \in \mathbb{R}^{M}} \sum_{i=1}^{N} (P(\boldsymbol{d}_{i}) - P_{i})^{2} + \lambda \sum_{i,j=1}^{N,N} c_{i}c_{j} \exp(-\|\boldsymbol{d}_{i} - \boldsymbol{d}_{j}\|_{2}^{2}/2\sigma^{2})$$

Cross validation

assessing the values of hyperparameters: model selection.

- Fix values of hyperparameters
- Split data into training and validation. Train and assess performance on test data
- Repeat over several training vs validation splits. Average performance over splits.
- Optimize hyperparameters (grid search, stochastic sampling)
 - \rightarrow select model with optimal values of the hyperparameters
Regression: analysing results

- The error metric for the analysis does not need to be the (root) mean squared error, (R)MSE.
- Other interesting metrics: Mean absolute error (MAE), median (50th percentile), other percentiles.
- Recommendation: use more statistic than just the center (average or median)

Box and violin plots

Sutton *et al.*, npj Comput Materials (2019) 10.1038/s41524-019-0239-3.

Ouyang, Ahmetcik *et al.*, J Phys Materials (2019) DOI: 10.1088/2515-7639/ab077b.

Classification: analysing results

Predicted class

E.g. Positive: is a metal

Accuracy	= (TP + TN) / All
Precision	= TP / (TP+FP)
Sensitivity	= TP / (TP+FN)
Specificity	= TN / (TN+FP)

Actual class

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement

obtaining *rewards*

Leland McInnes, A Bluffer's Guide to Dimension Reduction https://youtu.be/9iol3Lk6kyU Udell, Horn Zadell, Boyd, Generalized low rank models 2016 arXiv: 1410.0342

Leland McInnes, A Bluffer's Guide to Dimension Reduction https://youtu.be/9iol3Lk6kyU Udell, Horn Zadell, Boyd, Generalized low rank models 2016 arXiv: 1410.0342

As many *d* as necessary: **Dimension reduction**

Leland McInnes, A Bluffer's Guide to Dimension Reduction https://youtu.be/9iol3Lk6kyU Udell, Horn Zadell, Boyd, Generalized low rank models 2016 arXiv: 1410.0342

Only one *d*: (centroid-based) **cluster analysis**

es, A Bluffer's Guide to Dimension Reduction https://youtu.be/9iol3Lk6kyU ouell, Horn Zadell, Boyd, Generalized low rank models 2016 arXiv: 1410.0342

Udell, Horn Zadell, Boyd, Generalized low rank models 2016 arXiv: 1410.0342

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement

obtaining *rewards*

Reinforcement learning

"A supervised learning starting which builds its own training dataset starting from no data".

The *agent* changes its *state* by taking *actions*: i.e., by *exploring* or *exploiting* the environment, on the basis of expected *reward* and *policy*. On the basis of the feedback from the *environment* (actual *rewards* or *punishments*), the model is updated.

See e.g.: Jørgensen et al., JCP 2019 doi: https://doi.org/10.1063/1.5108871

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement

obtaining *rewards*

Adversarial / generative

Artificial intelligence

Machine learning

Supervised predicting *labels*

Unsupervised

finding *structure*

Reinforcement 🎉

obtaining *rewards*

Adversarial / generative

Applications in materials science, an overview

Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics Predicting properties from (ensemble of) configurations – surrogate models Interpreting measurements, e.g., microscopy data

Materials design

Structure-oriented design Elements-oriented design Inverse design (Workflow design / Active learning)

The challenges

Small data Reliability/Accountability

Applications in materials science, an overview

Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics Predicting properties from (ensemble of) configurations – surrogate models Interpreting measurements, e.g., microscopy data

Materials design

Structure-oriented design Elements-oriented design Inverse design (Workflow design / Active learning)

The challenges

Small data Reliability/Accountability I - An AI may not injure a human being or, through inaction, allow a human being to come to harm.

II - AN AI MUST <u>obey orders</u> given it by human beings except where such orders would conflict with the First Law.

Applications in materials science, an overview

Materials analysis/predictions

Predicting properties from composition (& structure) – materials informatics Predicting properties from (ensemble of) configurations – surrogate models Interpreting measurements, e.g., microscopy data

Materials design

Structure-oriented design Elements-oriented design Inverse design (Workflow design / Active learning)

The challenges

Small data Reliability/Accountability Interpretability/Explainability

Al algorithms in the future lectures

Infrastructure

NOMAD and FAIRmat

When (initial) data are scarce

Active and reinforcement learning Multi-fidelity learning Bayesian inference and optimization Experiment design

Learning and exploiting interatomic potentials

Neural-network based Kernel based Markus Scheidgen

Bjørk Hammer Gian-Marco Rignanese Kentaro Kutsukake Sergei Kalinin

Daniel Schwalbe Koda Volker Deringer