Practical Bayesian optimization

Kentaro KUTSUKAKE

RIKEN, Japan

Kentaro KUTSUKAKE

Postdoctoral Researcher, Dr. Sci. Center for Advanced Intelligence Project (AIP), RIKEN Chair, Applied Informatics Group, Japan Society of Applied Physics

Experience

- 2003-2007 PhD student, Tohoku University
- 2007-2010 Assistant Professor, Crystal Growth Physics lab. (Prof. Nakajima), IMR, Tohoku University
- 2010-2017 Assistant Professor, Crystal Defects Physics lab. (Prof. Yonenaga), IMR, Tohoku University
- 2017-2018 Designated Lecturer, Info-analysis lab. (Prof. Inoue), IIFS, Nagoya University
- 2018- Postdoctoral Researcher, Data-Driven Biomedical Science Team (Prof. Takeuchi), AIP, RIKEN
- 2018- Visiting Associate Professor, IMaSS, Nagoya University

Research Interest

Application of informatics to crystal engineering

Crystal growth and characterization of mc-Si for solar cells

Outline

- 1. Introduction of Bayesian optimization
- 2. Applications to crystal engineering
 - ✓ 2D spatial mapping of micro-beam XRD
 - ✓ Hydrogen plasma treatment
 - ✓ Grinding process of SiC
 - ✓ Epitaxial growth of Si
 - ✓ Short summary
- 3. Tutorial
 - ✓ 1D Bayesian optimization
 - ✓ 2D Gaussian process regression
 - 2D Bayesian optimization

4. Summary

Inverse problem

Inverse problem

We want to know the process condition that minimize (maximize) the properties.

Find **x** that minimize **y**.

Optimization using machine learning model

Find x that minimize y.

Optimization results depend on regression and optimization methods.

Optimization using machine learning model

Find x that minimize y.

Optimization using machine learning model

Find x that minimize y.

Small data = Limitation of number of experiments

These data are not effective for the optimization.

Small data = Limitation of number of experiments

These data are not effective for the optimization

Allocate resources to more important areas.

Sequential optimization

Sequential optimization

Here is the x that gives the smallest y.

Sequential optimization (small data)

Alternating regression & optimization and experiment & measurement

P Bayesian optimization, IKZ FAIRmat winter school

ו=אוא

Bayesian optimization, IKZ FAIRmat winter school

ו=אוא

P Bayesian optimization, IKZ FAIRmat winter school

ו=אוא

Bayesian optimization, IKZ FAIRmat winter school

Application to 2D spatial mapping of micro-beam XRD

Spatial mapping of diffraction pattern

Spot size : Φ 1 μ m

Sample and diffraction pattern

Large variation in crystal orientation and composition of Si_{1-x}Ge_x

Spatial mapping

Average diffraction pattern

Target Find the most tilted position

Position (µm)

Sequential optimization

```
Measurement of diffraction pattern
```

 $\overset{\bullet}{\text{Calculation of tilt angle}}$

Bayesian optimization

Suggestion of next position with highest expected improvement

Predicted crystal orientation distribution

Search for the most tilted position

Crystal orientation distribution predicted with 48 points

Crystal orientation distribution with 961 points

The most tilted position was obtained with small number of measurement.

Bayesian optimization, IKZ FAIRmat winter school

Application to hydrogen plasma treatment

Solar cells and Hydrogen plasma treatment

Bayesian optimization for hydrogen plasma treatment

Surface passivation in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment

ו=אוא

P Bayesian optimization, IKZ FAIRmat winter school

Bayesian optimization for hydrogen plasma treatment

Surface passivation in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment

Application to grinding process of SiC

Optimization of grinding process

Process parameters

SiC wheel · **Dresser wheel** : <u>Rotation rate</u>, <u>Moving speed</u>

Grinding wheel : Rotation rate, Hardness, Roughness

SiC wheel Dresser wheel

Objective parameters

Processing speed, Surface roughness

Difficulty: Complicated relationship between the process parameters and object parameters

We performed Bayesian optimization on grinding process.

Experimental flow chart

Initial data: 27 experiments at random condition

- 1. Gaussian process regression for processing speed, Surface roughness
- 2. Calculate EI (expected improvement)
- 3. Suggest next condition by maximize El
- 4. Experiments with the suggested condition
- 5. Add new data points to the training data

×32

Bayesian optimization of grinding process

Initial data

There are no data in the target zone in the initial data. \rightarrow It is difficult to find appropriate condition by random search.

Bayesian optimization of grinding process

Bayesian optimization

At the fifth experiment, grinding speed was significantly improved while maintaining the surface roughness.

Bayesian optimization of grinding process

Bayesian optimization

Also in the following experiments, appropriate conditions were obtained.

Application to epitaxial growth of Si

Maximize the growth rate while maintaining the 5 quality parameters

Source gases Si substrate Susceptor Heaters

Epitaxial growth of Si (CVD method)

Process parameters (X: 12 parameters)

- ★ Temperatures (Substrate、Heaters、etc.)
- ★ Gases (Flux of source gases、etc.)
- ★ Configurations (Position, Rotation、etc.)

Growth rate and quality paramters

K. Osada, K. Kutsukake, J. Yamamoto, S. Yamashita, T. Kodera, Y. Nagai, T. Horikawa, K. Matsui, I. Takeuchi and T. Ujihra, Materials Today Communications, 25 (2020) 101538.

BO → Explore new experimental conditions → Unexpected error

(i) Error A : Limit the x parameter range.

(ii) Error B : Make a prediction model for the parameter related to error B and use it as a constraint.

Bayesian optimization, IKZ FAIRmat winter school

General BO: Number of experiments is limited.

This study: The time period for the optimization is limited.

 \rightarrow Increase the number of data is effective.

Objective function	Evaluation cost	Importance
1. Growth rate	Low	High
2. Thickness uniformity	Low	High
3. Resistivity uniformity	High	Low
4. Small particle	Low	Low
5. Large particle	Low	Low
6. Slip length	High	High

★ Procedure 1: Consider only 2 parameters (growth rate and thickness uniformity)
★ Procedure 2: Consider all the parameters

Acquisition functions

Procedure1: Single Quality Constraint Bayesian Optimization (SQCBO)

$$x^* = \underset{X}{\operatorname{argmax}} E_f[\max\{f(x) - f^*, 0\}] \times E_g[\max\{g_{threshold} - g(x), 0\}]$$

Procedure2: Multi Quality Constraint Bayesian Optimization (MQCBO)

$$\begin{aligned} x^* &= \operatorname*{argmax}_{X} E_{f}[\max\{f(x) - f^*, 0\}] \\ s.t. \quad E_{threshold} - E_{g}\left[\max\{g_{threshold} - g(x), 0\}\right] \leq 0 \end{aligned}$$

 $E[\cdot]$: Expected value calculation operator f^* : Maximum value of growth rate in the measured data $g_{threshold}$: Threshold for quality parameters $E_{threshold}$: Threshold fo EI

K. Osada, K. Kutsukake, J. Yamamoto, S. Yamashita, T. Kodera, Y. Nagai, T. Horikawa, K. Matsui, I. Takeuchi and T. Ujihra, Materials Today Communications, 25 (2020) 101538.

Flowchart of the adaptive constraint BO

Procedure 1 : SQCBO: Single Quality Constraint Bayesian Optimization Procedure 2 : MQCBO: Multi Quality Constraint Bayesian Optimization Procedure 3 : Local search with experts.

1.8 times higher

growth rate was achieved while maintaining the quality parameters within the requirements.

K. Osada, K. Kutsukake et al., Materials Today Communications, 25 (2020) 101538. Using Bayesian optimizaiton,

- The most tilted position in XRD measurement of SiGe film.
- High passivation performance in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment
- Significantly improved condition in grinding of SiC wafer
- ✓ 1.8 times higher growth rate in epitaxial growth of Si was obtained with a small number of experiments.

Scientists, Engineers

- ✓ Low dimensional space
- ✓ Domain knowledge
- ✓ Local optimization

Collaboration between scientists and machine learning → Further development in the science and technology.

This study was supported by the Japan Society for the Promotion of Science through KAKENHI (JP18K19033), the New Energy and Industrial Technology Development Organization (NEDO), MEXT, Grants-in-Aid for Scientific Research on Innovative Areas "Hydrogenomics" (JP18H05514), and the Center for Advanced Intelligence Project, RIKEN.

The author acknowledges

GlobalWafers Japan Co., Ltd.: Yuta Nagai, Tomoyuki Horikawa, Hironori Banba, Jun Yamamoto, Shigeo Yamashita, Takashi Kodera, Koji Izunome, Takashi Ishikawa, Hisashi Matsumura, and Hiroyuki Tsubota

Tohoku University: Kensaku Maeda

Nagoya University: Toru Ujihara, Keiichi Osada, Takashi Nakano, Noritaka Usami, Shinsuke Miyagawa, Kazuhiro Gotoh, and Yasuyoshi Kurokawa

RIKEN: Ichiro Takeuchi

nitole Corporation: Kiyoshi Narita, Ryong-Seok Doi, and Yukihisa Takeda

Tutorial

Please learn about

- $\times\,$ How to write python codes
- O How incorporate your scientific domain knowledge into the machine learning model and optimization flow

White box optimization

We can incorporate our scientific domain knowledge.

Further reduction of the number of experiments

We can understand the reason why BO suggested this next condition.

We can overcome some BO trouble.

Black box optimization

Automatic optimization libraries (Gpyopt, Optuna, etc.)

Automatic optimization

Gaussian process regression (GPR)

Basic idea: if x is similar, y should be similar. \rightarrow Gaussian process: consider the data points to be slices of an infinite-dimensional multivariate Gaussian distribution.

Gaussian process regression (GPR)

Kernel function: a function that gives the degree of similarity (covariance) of data

Gaussian kernel (RBF kernel)

$$k(\mathbf{x}, \mathbf{x}') = \theta_1 \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|^2}{\theta_2}\right)$$

Hyper parameters Constant term (Effects similar to amplitude) Length scale (Effects similar to wave length

Gaussian process regression adjusts these hyperparameters like weights in other regressions to get a regression result that fits the data.

Acquisition function

Acquisition function: index for determining the next experimental condition

- PI : Probability of improvement $\alpha_{PI}(\mathbf{x}; \mathcal{D}_n) := \mathbb{P}[v > \tau] = \Phi\left(\frac{\mu_n(\mathbf{x}) \tau}{\sigma_n(\mathbf{x})}\right)$
- EI: Expected improvement $\alpha_{\text{EI}}(\mathbf{x}; \mathcal{D}_n) := \mathbb{E}[I(\mathbf{x}, v, \theta)]$

$$= (\mu_n(\mathbf{x}) - \tau) \Phi\left(\frac{\mu_n(\mathbf{x}) - \tau}{\sigma_n(\mathbf{x})}\right) + \sigma_n(\mathbf{x}) \phi\left(\frac{\mu_n(\mathbf{x}) - \tau}{\sigma_n(\mathbf{x})}\right),$$

UCB : Upper Confidence Bound $\alpha_{\text{UCB}}(\mathbf{x}; \mathcal{D}_n) := \mu_n(\mathbf{x}) + \beta_n \sigma_n(\mathbf{x})$

In the tutorial, we use lower confidence bound (LCB).

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218.

GPR : Influence of hyperparameter range

White noise range

WhiteKernel range: $1E-2 \sim 1E2$

WhiteKernel range: Set to 1

Noise level constraints experimentally obtained or based on expert knowledge lead to more reasonable regression.

GPR : Influence of hyperparameter range

Length scale range

RBF range : 1E-2~1E2

RBF range : $2E-1 \sim 1E2$

Length scale constraints based on expert knowledge lead to more reasonable regression.

2D Gaussian process regression

2D Gaussian process regression

Find the combination of x0 and x1 that gives the minimum y using the measured data.

2D Gaussian process regression

High expression ability

Regression of complex surfaces with high nonlinearity

Important points

1. Does not regress well on high dimensional inputs.

2. The number of computations increases with the cube of the number of data.

Find the combination of x0 and x1 that gives the minimum y using sequential optimization starting from 5 data.

GPR : Influence of anisotropy

Whether X0 and X1 share the RBF length scale or not

Important points: Parameter settings

Scientific knowledge Ideal result you want

Hyperhyperparameters:

Length scale range, Noise level range, Anisotropy, etc. **Hyperparameters**:

 κ in UCB, normalization of x and y, etc.

Lead to forgery

Important points: Global prediction

Bayesian optimization is an optimization method and NOT global prediction method.

We cannot use GPR model obtained through BO for global prediction.

