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• “Improve”: Renewable energy, self-driving cars, transparent displays, new memory technologies

• “Discover”: Room temperature superconductivity, high mechanical stress materials

• “Engineer”: Quantum computing, single-atom catalysts, biomolecules

Functionality, manufacturability, cost

The World is the Material Opportunity



Batteries: Li-ion and Beyond

Investment

C
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t

Material 

cost

Li-ion

Current state of 

R&D

We should invest in red. 

But how do we know it?

• Batteries are required element of energy transition (EVs, ESS, mobile devices)

• Currently Li-ion is the primary technology

• Optimization of Li-ion batteries takes years (even with same process on new Gigafactory)

• However, it is far from Goldilock zone for ESS or energy transport

• How can we optimize usage and safety for Li-ion batteries in EVs?

• How do we select beyond Li technologies for ESS?



Solar Photovoltaics: Will Silicon Ever Reign?

• Solar energy is the fastest growing energy sector

• Si is now reining material – however, it is really not the optimal 

material for PV (heavy, expensive)!

• Hybrid perovskites can be used as ideal PV materials – if we can 

make them stable and scale manufacturing!



Quantum Computing and Single-Molecule Biology 

NIST

Zyvex Labs

Oxford Nanopore

• Direct atomic fabrication: quantum communications and quantum computing, environmental sensing

• Single-molecule biological devices

• Success story 1: cryo-electron microscopy

• Success story 2: nanoelectron diffraction
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Solution processable thin 

films and single crystal 

growth

Properties

✓ Mixed ionic, electronic 

conductivity

✓ Low defect density (Defect 

tolerance)

✓ High optical absorption

✓ Moderate mobility

✓ Long carrier diffusion 

length

Applications

❑ Solar Cells

❑ Photodetectors

❑ Light Emitting Diodes

❑ Ionizing Radiation 

Sensors

❑ Memristors

CH3NH3PbBr3 CH3NH3PbI3

ABX3

Why Metal Halide Perovskites



What is a workflow?

Stability and 

properties

Reagents

Combinatorial synthesis

Single crystals

Films

Physical properties

Mass-spectrometry

Cathodoluminescence

• Workflow: ideation, orchestration, implementation

• Domain specific language 

• Dynamic planning: latencies and costs

• Reward and value functions

Workflows are often designed in academic labs 

and adopted by industry. 
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Spatial Distribution & Histogram of A-cations: CsxFA1-xPbI3 MHPs

Aggregation

Key observations

1. Highly disordered MHP structure 

w/o thermal annealing, mainly 

responsible for CsI

2. Thermal annealing promotes the 

reorganization of A-cations

3. FA evaporate at high T

4. Appropriate Cs can regulate the 

local inhomogeneities

Uniform

VaporizedAggregation

glass

mixed perovskites

Ion beam

Secondary ions

ToF Detector

Chemical Exploration of MHP: ToF-SIMS



10

1. CsI → δ-CsPbI3 → Alloyed α-CsFAPbI3

2. δ-CsPbI3 → Alloyed α-CsFAPbI3 → +PbI2 (allowed)

3. 33% of Cs is inferior to formation of α-CsFAPbI3 due to FA evaporation

Identification of Local Phase Inhomogeneities

No PbI2

No PbI2

*Pixel width: 40 nm, 

Scale bar: 1 μm

*Red-marked region: 

CL-inactive (non-

emissive), Assigned as 

CsI

Physical Exploration of MHP: Cathodoluminescence
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What do we hope to achieve?

Microscopy today:

• Primary component of research in materials science, physics and biology

• 1000s of high-end (S)TEM platforms, ~10,000 overall

• 1000s of high-end UHV SPMs, >50,000 ambient

• Chemical and mass-spectrometric imaging

What do microscopists do?

• Most of the time - sit alone in the dark room and turn knobs 😏

• Limited amount of collected data

• Case for automation: CryoEM

Unsurprisingly, inspired by autonomous cars, 

etc. – multiple proposals to make automated 

microscopes!
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Workflows in Scanning Probe Microscopy
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s
tr

u
m

e
n

t 
p

la
n

e
W

o
rk

fl
o

w
 p

la
n

e

Overview scan

Zoom in Zoom in

After acquisition 

analysis

Tune 

microscope

Initiate scan 

(parameters)

Position 

probe (x,y,t)

Initiate 

spectrum 

(parameters)

Minimal instruction set control language

Stream data

?
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Why Automated Experiment?
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• Interesting functionalities are expected at the certain elements of 
domain structure

• We can guess some; we have to discover others

• Can we run experiment so that we either explore 
• only selected regions, 
• discover new functionalities, or 
• seek functionalities we want?
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Why synthesis (or theory)?

• Automated synthesis in its simplest form requires 
some way to navigate phase diagrams

• In more complex form, processing space.
• Ideally, incorporate physical knowledge

• Similar problem - theory

M. Ahmadi

J2

J1

Ising model
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Combinatorial library

1234567

1~5
7

20%Sm BiFeO3BiFeO3 Linear est. 7%Sm BiFeO3

arXiv:2004.11817

Sample by I. Takeuchi, UMD
Phase diagram by N. Valanoor et al.

https://arxiv.org/abs/2004.11817


Why Machine Learning?

Why is it difficult?

• Requires domain expertise and domain-
specific goals

• Deeply causal and hypothesis drive 
nature of domain sciences

• No single answer: culture, not a method

• Infrastructure, open code, open data

• Most important: active nature of 
scientific proces

ImageNet2012

2014

2016

2018

2020

GANs
VAEs

Attention
Transformers

muZero

AlphaGo

Graph NN
Google Colabs

DCNNs

Invariant VAEs

• Last decade has experienced an explosive growth of machine learning and 
artificial intelligence applications

• These developments have spanned areas from computer vision to medicine 
to autonomous systems and games

• However, the progress and impact as applied to experimental physical 
sciences has been minimal….

Microsoft: GitHub

Meta: Open Catalyst, 

Meta: Papers with Code

Toyota: TRI

Google: AlphaFold

NVIDIA: protein folding
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Automated Experiment: 
almost easy…. If you know what you are looking for
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Trigger Threshold

Voltage Pulse
𝜏= 1-10 ms

Time 

Tip
Location

Example PFM Phase

FerroBOT: Image-based feedback

Real-time Feedback

P
h

ase [d
eg.]

Reduction of ”purple” domain

• FPGA – Labview – Matlab framework

– Driving with AFM
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Real-time Manipulation

FerroBOT: single action table

Amplitude Phase

• FPGA – Labview – Matlab framework

– Driving with AFM

• BiFeO3: map DW energy landscape

– Pulsing 5 ms, 1.5V, vacuum, domain wall growth
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Trigger Threshold

Voltage Pulse
𝜏= 1-10 ms

Time 

Real-time Feedback
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Realtime Feature Finding: PbTiO3

• Cypher microscope

– Ethernet connection for 
transmitting locations

• Skimage corner finding

– Thresholded image feed

• Python – LabView 
framework

• Outlook

– IV curves on domain walls 

– Ferroelastic domain wall 
probing
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BEPS at FeaturesTip LocationFeature Recognition

Initial State via Vertical Piezoresponse Force Microscopy 

Here, we use simple computer vision algorithms to explore polarization switching in the 
regions predefined by operator based on prior knowledge
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Automated SPM #1

lo
o

p
 w

id
th

Liu, Y., Kelley, K.P., Funakubo, H., Kalinin, S.V., 
Ziatdinov, M., Arxiv, submitted
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Automated IV measurement

Traditional IV measurement

1 um

Automated Experiment in cAFM



dark condition light condition

LightDark

max power = current x voltage

hysteresis factor

turn on voltage

Automated Experiment in IV



Implementation: Kevin Roccapriore, Ayana Ghosh, Sergei V. Kalinin & Maxim Ziatdinov 

Decision making during the experiment: real time analysis

Automated 

control
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Automated Experiment: 
… with John Snow priors…
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Gaussian Process Regression
• Covariance matrix determines what type of functions we will allow. 

k x, x′ = exp −
1

2𝑙
𝑥 − 𝑥′ 2
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Gaussian Process Regression
• Covariance matrix determines what type of functions we will allow. 

k x, x′ = exp −
1

2𝑙
𝑥 − 𝑥′ 2
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Gaussian Process Regression
• Covariance matrix (kernel) determines what type of functions we will allow. 

k x, x′ = exp −
1

2𝑙
𝑥 − 𝑥′ 2

L controls the length scale – sort of how far points should be to make them 
independent of each other.
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Gaussian Process Regression

Note that in higher dimensions 
this is very computationally 
expensive, and in practice 
sparse methods 
(approximations) are used.
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Bayesian Optimization

N. de Freitas et al., Taking the Human Out of 

the Loop: A Review of Bayesian Optimization , 

Proceedings of the IEEE 104, 148 (2015)

• We have some measurements in space 
X, and we want to maximize some 
property f(X). 

• How can we decide what point to 
measure next to best maximize f?

• We need to balance the exploration of 
the space with exploitation of regions 
near we have already know
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Acquisition Functions

Probability of Improvement 
Acquisition Function

1. Confidence bound: simplest 
possible - just take the upper 
confidence bound from the 
prediction

2. Probability of Improvement: 
Integral from current functional 
maximum to upper limit of 
distribution as test point

3. Expected Improvement: Instead 
of probability of improvement, we 
want to maximize the expected 
increase in the function value

4. There are (always) more…



33

The basics: Bayesian Optimization

N. de Freitas et al., Taking the Human Out of the Loop: A Review of 
Bayesian Optimization , Proceedings of the IEEE 104, 148 (2015)

Obtain/update 

training data D

Train surrogate model
𝑋 → 𝑦

Make prediction

𝑋∗ → ഥ𝑓∗, 𝕍 𝑓∗

Acquisition function

𝑎𝑐𝑞(ഥ𝑓∗, 𝕍 𝑓∗ )

E
va

lu
a
te n

ew
 p

o
in

t

𝑋
∗ 𝑖
=
argm

ax(𝑎
𝑐𝑞
)

𝑋, 𝑦: (sparse) Training data

𝑋∗: New (not yet evaluated) points
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• Started to work in August 2019

• First, we planned to apply BO for autonomous experimentation at 

CNMS. Then, COVID happened…

• “So what if we use BO to explore the parameter spaces of 

theoretical models?”

Discovering regions where heat capacity

is maximized in NNN Ising model

Js

Jc

Implementation in GPim

Bayesian Optimization for physical discovery



Automated experiment workflows

SPM or STEM image

EELS or SPM datacube

Descriptor

• Sliding window/linear transform
• Keras DCNN
• rVAE (rotational invariance)
• rcVAE (plus classification)

• Acquisition functions 
• Pathfinder functions
• Kernel control

Gaussian 
processing

GPim library
(M. Ziatdinov)

• Integrated intensity
• Keras DCNN
• Spec2im autoencoder
• (im,spec)2(spec,im)
• CycleGAN

• AE based on structural analysis for STEM data
• AE based on spectral data in PFM
• AE based on DL for EELS data
• Feature of interest finding for mesoscopic images
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R. K. Vasudevan, K. Kelley, H. Funakubo, S. Jesse, S. V. Kalinin, M. Ziatdinov, 

ACS Nano (2021) https://doi.org/10.1021/acsnano.0c10239

Comparison with “ground truth”

Then, COVID restrictions got relaxed and Rama Vasudevan realized a “self-driving” PFM

3x gain in sampling efficiency

Bayesian Optimization for Self-Driving Microscopy
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Putting it together: GP optimized experiments

Measured Loop Area GP Prediction GP Uncertainty

But what if we do not know a priori what elements of domain structure are we interested in?
• First step – Gaussian Processing towards exploration of specific behavior
• Here, we explore regions with maximal area under hysteresis loop
• For N measured points, the GP reconstructs the loop area map and uncertainties of the reconstruction
• Based on these, next locations for measurements are selected
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Loop Area (ground truth) GP Prediction (400 px)

OverlaidLoop Area >0.8

arXiv:2103.12165

arXiv:2011.13050

Next steps:
• Incorporate prior knowledge of 

domain structure
• Factor in generative physics of 

ferroelectric domain structures
• These are complex ML problems 

But: the bridge is built!

https://arxiv.org/abs/2103.12165
https://arxiv.org/abs/2011.13050
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Automated Experiment: 
… as a scientist…
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Physics-based feature engineering:
Deep kernel learning – Bayesian optimization

Specify physics criteria

Measure a 
spectrum

Train DKL 
model with new 

data

Decide next 
position (optimize 
physics criteria)

spectrum

Acquire 
structural data

20 nm

structural data

Allows navigation of the system to search for physics

*Active learning*



41

• Between measurements, 
the beam is optionally 
blanked or placed in a safe 
position.

• This is an excellent
opportunity for “smart 
EELS” with beam sensitive 
materials

Structural 
image

Set of 
spectra

Opportunity alert

Physics-based feature engineering:
Microscope Operation



“Acquisition function” HAADF-STEM

1

2

Physics search criteria:

𝑹𝒂𝒕𝒊𝒐 = 𝑷𝒆𝒂𝒌 𝟏 / 𝒑𝒆𝒂𝒌 𝟐
• Curve fitting to help enforce physical processes

• Discovering physics in a “new” material MnPS3

20 nm

1

2

Discovering region with interesting physics



• Very similar behavior when searching for the same criteria!

• Success!

Discovery pathway depends on the reward structure (scalarizer 

that defines signature of physics we want to discover)!

More examples of physics discovery



Physics search criteria:

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝒇

(Specific peak intensity)

• (Same region) Simple physics search: peak max in selected 
region

HAADF-STEM
+ points visited

“Acquisition function”

Changing the criterion
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Automated Experiments in 4D STEM

Quantities to explore

➢ Electric field
➢ Potential
➢ Charge density
➢ Strain

Traditional 4D STEM: graphene “DPC”

Choose explorable quantity

D.P.
Local image 

patch
Scalarize
|𝑐𝑜𝑚|

1 px

2 px

0.2 px
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Automated Experiments in 4D STEM DPC example

Next measurement map
Visited pointsCoM angle

Real experiment

CoM magnitude

Choice of scalarizer (pre-
acquired data)

Acquisition 
function

Prediction map

Uncertainty map
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➢ (Deep Kernel Learning) Active learning of structure-property correlation.

start

active learning

real-time signal

structural images

output and save 
results

Active Learning

AI
CPU

GPU

Real-time 

signal

Real-time 

decision

Deep Kernel Learning for PFM
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Deep Kernel Learning AE
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Guided by: Off field loop area

➢ Large loop opening corresponding 180o domain walls probably due to the large polarization mobility of 

180o walls.

➢ Future work: DKL-nonlinearity study of HZO; CIPS domain walls.

Results: DKL predicted loop area map

DKL AE
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Automated Experiment: 
… as a scientist…

Bayesian optimization:

1. Works only in low-dimensional spaces

2. The correlations are defined by the kernel function (very limiting)

3. We do not use any knowledge about physics of the system

4. We do not use cheap information available during the experiment (proxies)
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Define a probabilistic model: o We substitute a constant GP prior mean function m with a structured 

probabilistic model of the expected system’s behavior.

o This probabilistic model reflects our prior knowledge about the system, 

but it does not have to be precise. 

o The model parameters are inferred together with the kernel parameters 

via the Hamiltonian Monte Carlo.

o The fully Bayesian treatment of the model allows additional control over 

the optimization via the selection of priors for the model parameters. 
Prediction on new data 𝑋∗:

𝛀𝒊 = {𝜙𝑖 , 𝜽𝑖} is a single HMC posterior sample 

with the kernel and prob model parameters

replaced with

GP Augmented with Structural model
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Probabilistic model

Prior predictive distribution: sGP

This model simply tells us that there are two minima in our data but does not assume to have any prior 

knowledge about their relative depth, width, or distance

GP Augmented with Structural model

Prior predictive distribution: GP
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Simple GP search
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Structured GP search
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Vanilla GP-BO
overlay with ‘ground truth’

sGP-BO
overlay with ‘ground truth’

overlay with prediction overlay with prediction

Probabilistic model

ൗ𝐴 tanh(
𝑓 𝐽1 +𝑓(𝐽2)

𝑤
)

where 𝑓 𝐽 is a third-degree 

polynomial with normal priors 

on its parameters

Application to Ising model
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Hypothesis active learning: hypoAL
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Next step: active model selection



58

Back to combinatorial libraries:
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𝑆 = 𝑆0 1 −
𝑥

𝑥0

2

+ 𝐶, 𝑥 ≤ 𝑥𝑐 ,

𝐶, 𝑥 > 𝑥𝑐

S = 𝑆0 1 −
𝑥

𝑥0

5
4

+ 𝐶0, 𝑥 ≤ 𝑥𝑐 ,

𝐶1, 𝑥 > 𝑥𝑐

Model 1 (second order 
phase transition):

Model 2 (first order 
phase transition):

Hypothesis selection for ferroelectric response
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Hypothesis Learning

▪ Can ML algorithm think like a scientist?

▪ Yes – automated experiment can pursue hypothesis-driven science!

Y. Liu, arxiv 2202.01089 

Y. Liu, arxiv 2112.06649

Thermodynamic 1

Thermodynamic 2

Wall pinning

Charge injection
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Automated Experiment #3—Automated Hypo-learning
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Hypothesis learning in action

Y. Liu, arxiv 2202.01089 

Y. Liu, arxiv 2112.06649

▪ ML algorithm has 4 competing 

hypothesis on domain switching 

mechanisms

▪ These hypothesis represent full set 

of possibilities for this system

▪ The microscope chooses 

experimental parameters in such a 

way as to establish which 

hypothesis is correct fastest 

▪ Important: the same approach can 

be implemented in synthesis and 

electrical characterization

▪ Machine learning meets hypothesis-

driven scientific discovery!
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DCNN rVAE BO

Select analysis 

method

Select component

1

Prior knowledge 

Reward Function

Material Parameters

$ $ $

• Weights

• Inductive biases

Human

AI

Experiment

More then ML: Human in the Loop

Discovery pathway depends on the reward structure!
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The World is Bayesian: Physics from Observations

• Experimentalists know the priors. Albeit they do not know that they know it, or how to 
convert them to algorithmic form

• However, how do we make guesses about the unknown?

𝑃 𝑇ℎ𝑒𝑜𝑟𝑦 𝐷𝑎𝑡𝑎 = 
𝑃(𝐷𝑎𝑡𝑎 𝑇ℎ𝑒𝑜𝑟𝑦)𝑃(𝑇ℎ𝑒𝑜𝑟𝑦)

𝑃(𝐷𝑎𝑡𝑎)

Hypothesis driven science:
What we want to learn

Domain expertise:

High Performance 
Computing

Forward model: Theory

Prior

PosteriorRefinement:

Can be 

defined as 

probabilistic 

model

Hypothesis 

formation:

How can we 

do it?
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Towards hypothesis learning

• Data already exists: Eureka, SISSO, SinDY, etc.

• What if we make hypothesis learning a part of active experiment?

• Need policies for hypothesis generation
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• AtomAI: comprehensive toolbox for DCNN-based 
supervised exploration of STEM and SPM Data:

• PyroVED: building structure-property correlations and 
unsupervised and semi-supervised physical discovery

• GPim: Gaussian processing toolbox for image analytics 
and automated experiment

• gpax: hypothesis-driven structured Gaussian Processes

• PyCroscopy: General data formats, workflows, and 
image analytics

What if I want to do it myself?

YouTube: M*N: Microscopy, Machine Learning, Materials

Medium: https://ziatdinovmax.medium.com/



Materials:
• Single crystals 
• Films
• Powders

STEM 
samples

Imaging and 
spectroscopy

data

• Ideas
• Hypotheses

• Contacts from people
• Us reaching out “Qualitative” image you 

can put in the paper

Paper on how microscope 
works/technique advancement

Theory-experiment comparison 
based on ”simple matching”

Questions:
• Where is the physics? 

• Is this a fishing expedition?
• hypothesis driven science?

State of microscopy now



Materials:
• Single crystals 
• Films
• powders

STEM 
samples

Imaging and 
spectroscopy

data

Feature 
extraction

Quantification

Uncertainty 
quantification

Learning
physics

• Ideas
• Hypotheses

• Contacts from people
• Us reaching out

Structure 
inversion

• Full cloud connection
• Availability of the analysis workflow
• Current status: ad-hoc local solutions/no scalability

• Chicken and egg problem: just cloud connection and data 
infrastructure is not enough if there is no way to analyze data

Vibronic and 
electronic  
physics

State of microscopy in the future



ResearcherInstrument Control/data acquisition
Community

• Social networking/education
• Publications/citations

1. Only small fraction of data stream from the instrumentation is captured
2. Only small fraction of captured data is analyzed, interpreted, and put in the context
3. Human-machine interaction during acquisition is often slow and can be non-optimal
4. Human interpretation of data is limited: bias and ignoring serendipity 
5. Information propagation and concept evolution in scientific community is slow and affected by non-scientific factors

ms min

Weeks -
months

SPM: 30,000+ platforms worldwide:
Large weakly connected instrumental network
(S)TEM: ~100s top level machines, 
much stronger integrated community

Classical Instrument research paradigm



1. Multiple geographically-distributed data generation node

2. Full capture of instrumental data stream /compression/curation

3. Coordination of protocols and data/metadata across the cloud

4. Cloud-based processing and dimensionality reduction

5. Community-wide analytics

Imaging in the Cloud



Expert Control

Automatic 

Expert System

Decision making
User 

Model
Experimental data

Timeline

-10 -5 0 5 10

-2.8

-1.4

0.0

1.4

2.8

 

 

P
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M
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.)

Bias (V)
Future:
• Automated analysis of routine data
• Identification of anomalies
• Initial training of new practitioners
• Data centers: information based on knowledge

• Synthesis of 
expertise: factor in 
human expert 
knowledge

• Context search: 
published results 
data mining/social 
networks

Opportunities: from single human expert to augmented 
systems



Traditional experiment:

1. Always based on workflows

2. Ideated, orchestrated, and implemented by humans

3. The “gain of value” during the workflow implementation is uncertain 

Beyond single tool: workflow design

Prior knowledge  

Operator curiosity

Value

Reward

Value of the step is key element: 

• Either based on prior knowledge

• Or defined in a sense of the 

reinforcement learning Q-function



Microscope control

• Fast data analytics

• On the fly feedback

Internal data infrastructure

• Full information capture

• Searchability and discoverability

• HPC assisted data analysis workflows

Tool sharing: open source

• PyCroscopy (data structures, image analysis)

• HyperSpy

• LieberSTEM

Data sharing

• CITRIN

• Materials Project

STEM 
(LBL)

HPC

STEM 
(ANL)

HPC

STEM 
(ORNL)

HPC

Data

Data

Data

Tools

Tools

Tools

Need: cloud infrastructure!



Cloud labs: facilities of the future

Emerald Cloud Lab, 

SF and CMU

1. Combined human-machine workflow implementation

2. Computer orchestrating agent

3. How would beyond human workflows be ideated?



1. Development of the labs capable of orchestrating predefined workflows based on human and robotic agents. 

2. Workflow design based on AI and human decision making, meaning specific series of synthesis and 
characterization steps described via executable hyperlanguage. 

3. Defining domain-specific reward functions. Why are we running experiments? Ultimately, we need to 
quantify (in the style of Bell’s equation) what is the benefit of the specific step in the workflow, and how does it 
accomplish or affects exploration and exploitation goals.

4. Integration of reward functions from dissimilar domains. For example, how does better microscope help us 
learn physics of specific material? Why would the specific DFT calculation help us understand experimental 
data?

5. Creating experimentally falsifiable hypothesis from the domain specific body of knowledge that can be 
incorporated in the exploratory part of automated workflows. 

6. Hypothesis generation beyond human. I suspect that this part gets close to AGI and is non-solvable in 
general, since it is extrapolation/intuition. Makes it interesting for ML!

Key challenge: reward-based workflow design



“New directions in science are launched by new tools much more often than by new
concepts. The effect of a concept-driven revolution is to explain old things in new ways.
The effect of a tool-driven revolution is to discover new things that have to be explained.”

Freeman Dyson

And technology

• Cloud connection and data infrastructure is necessary, but not enough
• Can we offer comprehensive workflow design, building, and optimization solutions?
• Potential to change way R&D is performed: academia, start-ups, industry  



Concluding:

• Machine learning is great, but

o Requires domain expertise

o Ease of use for deployment

o Some ML knowledge

• Microscope is a laboratory: 

o Engineering controls

o Algorithms

o Connection to domain expertise

Sergei V. Kalinin
sergei2@utk.edu

Connect!

YouTube

Twitter: Sergei_imaging

mailto:sergei2@utk.edu
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjMj5fIwdzJAhUBUz4KHdzBA6AQjRwIBw&url=http://thestamp.umd.edu/leadership_community_service-learning&psig=AFQjCNFgicFOxDHd6aSzQu3j54pzeZfVyg&ust=1450222391118971

