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The World is the Material Opportunity

Predicting crystal structure by merging
data mining with quantum mechanics

CHRISTOPHER C. FISCHER!, KEVIN J. TIBBETTS!, DANE MORGAN2 AND GERBRAND CEDER™

' Department of Materials Sclence and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Department of Materials Sclence and Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
*e-mall: gceder@mit.edu

« “Improve”: Renewable energy, self-driving cars, transparent displays, new memory technologies
- “Discover”: Room temperature superconductivity, high mechanical stress materials
« “Engineer”: Quantum computing, single-atom catalysts, biomolecules

Functionality, manufacturability, cost




Batteries: Li-ion and Beyond

Annual lithium-ion battery demand
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» Batteries are required element of energy transition (EVs, ESS, mobile devices)

» Currently Li-ion is the primary technology

» Optimization of Li-ion batteries takes years (even with same process on new Gigafactory)
* However, it is far from Goldilock zone for ESS or energy transport

 How can we optimize usage and safety for Li-ion batteries in EVs?
 How do we select beyond Li technologies for ESS?



Solar Photovoltaics: Will Silicon Ever Reign?

Global Annual PV Shipments

by Technology * = In 2020, 88% of PV shipments were mona c-
Si techmology, compared to 35% in 2015
[when multi peaked at 58%).

5

Efficiency 7 (%)

*  Nono P FERC was the dominant cell type in
2020, though n-type shipments grew 181%,
vy, to 13% of the market.

~ Figure 113 Conversion efficiencies of record efficiency devices (hybrid perovsite, Si
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Percentage of Global Py Shipments by Technology
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« Solar energy is the fastest growing energy sector 2 b
L
« Siis now reining material — however, it is really not the optimal 3 ol
material for PV (heavy, expensive)! b
» Hybrid perovskites can be used as ideal PV materials — if we can 3
make them stable and scale manufacturing! i
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Quantum Computing and Single-Molecule Biology

Oxford Nanopore

« Direct atomic fabrication: quantum communications and quantum computing, environmental sensing
« Single-molecule biological devices

« Success story 1: cryo-electron microscopy
« Success story 2: nanoelectron diffraction



Why Metal Halide Perovskites

Solution processable thin
fillms and single crystal

growth
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What is a workflow?

Comblnatorlal syntheS|s

Physical properties
~.

Reagents 0 voAoAgA 'e's

Mass- spectrometry

Workflow: ideation, orchestration, implementation
Domain specific language _ _ _
Dynamic planning: latencies and costs Workflows are often designed in academic labs
Reward and value functions and adopted by industry.



Chemical Exploration of MHP: ToF-SIMS

Spatial Distribution & Histogram of A-cations: Cs,FA,  Pbl; MHPs
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Key observations

1. Highly disordered MHP structure
w/o thermal annealing, mainly
responsible for Csl

2. Thermal annealing promotes the
reorganization of A-cations

3. FAevaporate at high T

4. Appropriate Cs can regulate the
local inhomogeneities



Physical Exploration of MHP: Cathodoluminescence
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What do we hope to achieve?

Microscopy today: nature
 Primary component of research in materials science, physics and biology REVIEWS
« 1000s of high-end (S)TEM platforms, ~10,000 overall MATERIALS

« 1000s of high-end UHV SPMs, >50,000 ambient
« Chemical and mass-spectrometric imaging

What do microscopists do?

* Most of the time - sit alone in the dark room and turn knobs
» Limited amount of collected data

« Case for automation: CryoEM

o THE ATOMIC-FORCE
Unsurprisingly, inspired by autonomous cars, REVOLUTION
etc. —multiple proposals to make automated July 2019

-
m I C ro S C O p eS I Artificial intelligence and automation could expand its potential.
H o
wwwal
' 3 1] " 1 ] S
T | o 100 N

Self Driving
Vehicle (SDV)
Overview g geeessesessesenn !

Special lssue: Atomic Fabrication with Electron
Beams and Scanning Probes



Workflows in Scanning Probe Microscopy

Zoom in Zoom in

3
. 2]
Overview scan ) f :
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(\ After acquisition
analysis

Minimal instruction set control language

"FM Signal, 4.u

Workflow plane

Tune Initiate scan Position S:;;gﬁhem St i
| robe (x.y.t ream data
microscope (parameters) P (Xy,1) (parameters)

Instrument plane




Why Automated Experlment"
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Why synthesis (or theory)?

: 33

Cubic
Chemistry Crystallography
Substitution ™, Incompatible symmetry
‘ -
Phase separation A > - Morphotropic phase
* WP
Chemical stability TWQ o boundary (MPB)
------ o Structural stability
S
A ‘- B
N B
J?Q.'\’Q Physics -7_/:1;*
MR Band ga N
P oo Ban =
Tetragonal mission Orthorhombic

« Automated synthesis in its simplest form requires
some way to navigate phase diagrams

* In more complex form, processing space.

 lIdeally, incorporate physical knowledge

« Similar problem - theory




Combinatorial Ilbrary Sample by I. Takeuchi, UMD

Phase diagram by N. Valanoor et al.

o Strong chemical pressure
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AT
X1 X' RE substitution

0% Sm 7% Sm 20% Sm

arXiv:2004.11817



https://arxiv.org/abs/2004.11817

Why Machine Learning?

- Last decade has experienced an explosive growth of machine learning and 2012 ImageNet
artificial intelligence applications

* These developments have spanned areas from computer vision to medicine DCNNs
to autonomous systems and games
* However, the progress and impact as applied to experimental physical 2014 Sﬁé\':
sciences has been minimal....
Why is it difficult? AlphaGo
. . . . 2016
* Requires domain expertise and domain-
specific goals Attention
Transformers

« Deeply causal and hypothesis drive

nature of domain sciences : . Graph NN
Microsoft: GitHub 2018 Google Colabs

- No single answer: culture, not a method Meta: Open Catalyst,
Meta: Papers with Code _
| Infrastructure, open code, open data Toyota: TRI Invariant VAEs

Google: AlphaFold

: muZero
NVIDIA: protein folding 2020

* Most important: active nature of
scientific proces



Automated Experiment:
almost easy.... If you know what you are looking for



FerroBOT: Image-based feedback

Real-time Feedback Example PFM Phase
4 A « FPGA - Labview - Matlab framework
> Trigger Threshold ~  Driving with AFM .
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FerroBOT: single action table

Real-time Feedback
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Real-time Manipulation

* FPGA - Labview — Matlab framework
—  Driving with AFM

* BiFeO,: map DW energy landscape

— Pulsing 5 ms, 1.5V, vacuum, domain wall growth

Amplitude ~ Phase




Realtime Feature Finding: PbTiO,

Initial State via Vertical Piezoresponse Force Microscopy

 Cypher microscope

— Ethernet connection for
transmitting locations

« Skimage corner finding
— Thresholded image feed

 Python — LabView
framework

e Qutlook

— |V curves on domain walls

— Ferroelastic domain wall
probing
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File Edit View Insert Cell Kernel Widgets Help | gpuenv @

B + x @ B 4+ v pPRun B C » Code v =@
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Automated SPM #1

ResHedNet Prediction BEPS Measurement Points
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Automated Experiment in cAFM
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Automated Experiment in IV

Current (nA)
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Automated Experiment:
... with John Snow priors...



Gaussian Process Regression

« Covariance matrix determines what type of functions we will allow.

k(x,x') = exp (— Zil (x — x’)z)

Samples from GP prior, | = 0.01

> \
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Gaussian Process Regression

« Covariance matrix determines what type of functions we will allow.
! 1 N2
k(x,x') = exp _Z_I(X_X)

Samples from GP prior, [ = 0.1

>XTHN
NS

220 -15 -10 -05 0.0 0.5 1.0 15

2.0



Gaussian Process Regression

« Covariance matrix (kernel) determines what type of functions we will allow.
! 1 N2
k(x,x") = exp —Z—I(x—x)

Samples from GP prior, [ = 1.0

3-
2-
1 -‘--—_.___,_..-l——
— T — J—
E'-l—_
-3 . . . . L L L .
—-2.0 -1.5 —-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0

L conftrols the length scale — sort of how far points should be to make them
independent of each other.



Gaussian Process Regression

kKernel = Matern(length_scale=1.21, nu=1.5)

¢  QObservations
Mean Prediction

BN 2o interval

=20 - Note that in higher dimensions
this is very computationally
expensive, and in practice

—30 - sparse methods
(approximations) are used.



Bayesian Optimization

—— True Objective.
[ Discarded Region.
[ Confidence Region.
e®e Sampled Points.

N. de Freitas et al., Taking the Human Out of
the Loop: A Review of Bayesian Optimization,
Proceedings of the IEEE 104, 148 (2015)

We have some measurements in space
X, and we want to maximize some
property f(X).

How can we decide what point to
measure next to best maximize f?

We need to balance the exploration of
the space with exploitation of regions
near we have already know



Acquisition Functions

Probabillity of Improvement
Acquisition Function

1. Confidence bound: simplest
possible - just take the upper
confidence bound from the
prediction

2. Probability of Improvement:
Integral from current functional
maximum to upper limit of
distribution as test point

f(x")E

3. Expected Improvement: Instead
of probability of improvement, we
want to maximize the expected
increase in the function value

|
| |
| . 4. There are (always) more...




The basics: Bayesian Optimization
X,y (sparse) Training data
n=2 X.. New (not yet evaluated) points

-
-~
-~
-
~ -
-

-~ - -
....... == objective fn (f('))

Obtain/update
training data D

observation (x)

¥ acquisition max

acquisition function (u(-))

T

A 4

n= 3 * e~ I-<I-I
Train surrogate model =
L
X—y < B
2 3
y % =
N\
2 3
Make prediction < 3

X, - f.. VI£]

l

—

posterior mean (u( +))
Fo(st)erio(r)L;ncer‘cainty/7 v ACC{UISITIOH fUﬂCTIOﬂ
H . io’ . —
L . acq(f., VI£]D

N. de Freitas et al., Taking the Human Out of the Loop: A Review of
Bayesian Optimization , Proceedings of the IEEE 104, 148 (2015)



Bayesian Optimization for physical discovery

Full grid simulation

14

Discovering regions where heat capacity
IS maximized in NNN Ising model

« Started to work in August 2019

 First, we planned to apply BO for autonomous experimentation at
CNMS. Then, COVID happened...

« “So what if we use BO to explore the parameter spaces of
theoretical models?”

Implementation in GPim

def acquisition_function(gpmodel, X _full, X_sparse):
mean, sd = gpmodel.predict(X full, verbose=8)
acq = 5 * sd + 10 * mean
acq, (mean, sd)

Explored points at step 0 GP prediction at step 0

N =

boptim = gpim.boptimizer(
X_sparse, Z_sparse, X _full,
J2_to_S func, acquisition_function=acquisition_function,
batch_size=1600, lengthscale=[1., 40.], dscale=4, exit_strategy=1,
exploration_steps=650, use_gpu=True, verbose=1, save_checkpoints=True,
filename="/content/drive/My Drive/research/Ising BO/bo _ising heat acql e')

3
4
5
6
7
8
9

boptim.run()




Automated experiment workflows

SPM or STEM image
5, * Keras DCNN

"(:{f

",
=
I3
3
&
k
|5
X
&

 Sliding window/linear transform

* rVAE (rotational invariance)
* rcVAE (plus classification)

Descriptor

\ 4

* Integrated intensity

* Keras DCNN

e Spec2im autoencoder
* (im,spec)2(spec,im)

* CycleGAN

* AE based on structural analysis for STEM data

* AE based on spectral data in PFM

* AE based on DL for EELS data

e Feature of interest finding for mesoscopic images

Gaussian

Input data

v

processing

I » Acquisition functions
e Pathfinder functions
 Kernel control

GPim library
(M. Ziatdinov)

GP prediction 0

Uncertainty




Bayesian Optimization for Self-Driving Microscopy

Then, COVID restrictions got relaxed and Rama Vasudevan realized a “self-driving” PFM

List of next Bayesian DGX-2
Optimization =

measurement points

Comparison with “ground truth”

| Transfer

| SHO Fit a= -
I Loop Area St ¥

Perform
measurement
at prescribed
pixels

Piezoresponse (a.u.)

Voltage (V)

3x gain in sampling efficiency

R. K. Vasudevan, K. Kelley, H. Funakubo, S. Jesse, S. V. Kalinin, M. Ziatdinov,
ACS Nano (2021) https://doi.org/10.1021/acsnano.0c10239



Putting it together: GP optimized experiments
Measured Loop Area GP Prediction GP Uncertainty

40 A 40

30 A 30

20 A 20

104 10

| [ | ‘
O—I T T T T 0 0

0 10 20 30 40 0 10 20 30 40 0 10 20 30

But what if we do not know a priori what elements of domain structure are we interested in?

» First step — Gaussian Processing towards exploration of specific behavior

 Here, we explore regions with maximal area under hysteresis loop

 For N measured points, the GP reconstructs the loop area map and uncertainties of the reconstruction
« Based on these, next locations for measurements are selected



GP Prediction (400 px)

Loop Area (ground truth

10

arXiv:2103.12165
arXiv:2011.13050

Next steps:

 Incorporate prior knowledge of
domain structure

« Factor in generative physics of
ferroelectric domain structures

* These are complex ML problems

Loop Area >0.8 | Overlaid

But: the bridge is built!



https://arxiv.org/abs/2103.12165
https://arxiv.org/abs/2011.13050

Automated Experiment:
... as a scientist...



Physics-based feature engineering:

Deep kernel learning - Bayesian optimization
Specify physics criteria

*Active learning* struﬁfgruailiedata

L Measure a
spectrum

l

Train DKL
model with new
data

l

Decide next
position (optimize

Neural network phyS|CS Cl’lterla)

<
syabue]

Inputs
>

Allows navigation of the system to search for physics



Physics-based feature engineering:
Microscope Operation

Structural
image

Set of
spectra

Epoch 1/%
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Opportunity alert

Between measurements,
the beam is optionally
blanked or placed in a safe
position.

This is an excellent
opportunity for “smart
EELS” with beam sensitive
materials




Discovering region with interesting physics

« Discovering physics in a “new” material MnPS,

Physics search criteria:
» Curve fitting to help enforce physical processes

Ratio = Peak 1 / peak 2

“Acquisition function” HAADF-STEM
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More examples of physics discovery

» Very similar behavior when searching for the same criteria!

« Success!

Discovery pathway depends on the reward structure (scalarizer
that defines signature of physics we want to discover)!



DKL prediction, step 25 DKL uncertainty, step 25

Changing the criterion
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Automated Experiments in 4D STEM

Quantities to explore

> Electric field Choose explorable quantity
» Potential
» Charge density
» Strain
Local image

Traditional 4D STEM: graphene “DPC”
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Neural network

Scalarize
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GP layer
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Automated Experiments in 4D STEM DPC example

Choice of scalarizer (pre- Real experiment
acquired data)

_ Next measurement map . _
CoM angle CoM magnitude Visited points

4

Acquisition
function

Prediction map

Uncertainty map




Deep Kernel Learning for PFM

Active Learning
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» (Deep Kernel Learning) Active learning of structure-property correlation.
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Deep Kernel Learning AE
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DKL AE

Guided by: Off field loop area Results: DKL predicted loop area map

Step 0-Acquisition function values Prediction Uncertainty
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» Large loop opening corresponding 180° domain walls probably due to the large polarization mobility of
180° walls.
» Future work: DKL-nonlinearity study of HZO; CIPS domain walls.



Automated Experiment:
... as a scientist...

Bayesian optimization:

1. Works only in low-dimensional spaces

2. The correlations are defined by the kernel function (very limiting)

3. We do not use any knowledge about physics of the system

4. We do not use cheap information available during the experiment (proxies)



GP Augmented with Structural model

Define a probabilistic model: ~ © We substitute a constant GP prior mean function m with a structured

probabilistic model of the expected system’s behavior.
y ~ MVNormal (@K)

o This probabilistic model reflects our prior knowledge about the system,
Kij = 0%exp(0.5(x; — x;)*/1*
but it does not have to be precise.
o~ LogNormal(0, s;)

o The model parameters are inferred together with the kernel parameters
[ ~LogNormal(0,s,)

via the Hamiltonian Monte Carlo.

o The fully Bayesian treatment of the model allows additional control over

Prediction on new data X, o . . .
the optimization via the selection of priors for the model parameters.

f! ~ MVNormal (uepf st Zgio St)

replaced with

ppe™ = m(X.) + KX, XI0OK(X, X[67) " (v = m(0) = 20" = m(X.1¢%) + K(X., X|0DK(X, X|6") " (y — m(X|¢))

zgi"st = K(X.,X,|0") — K(X*,X|9’5)K(X,X|9’3)_1K(X, X.|8) Q! = {¢!, 0} is asingle HMC posterior sample
with the kernel and prob model parameters



GP Augmented with Structural model
Prior predictive distribution: GP

Samples from GP prior, [ = 0.1

.
Probabilistic model 2-
.
N o
m= yo— Yn-1Lln (N=2) 1
Yo ~ Uniform(=10,10) N N S N O N
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
I Ap '

Prior predictive distribution: sGP

n o~
JGEmazew)

A, ~ LogNormal(0,1) °

—10 T

w,, ~ Half Normal(.1)
x9y ~ Uniform(0,1)
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This model simply tells us that there are two minima in our data but does not assume to have any prior
knowledge about their relative depth, width, or distance



Simple GP search
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Structured GP search
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Application to Ising model

Probabilistic model

where f(J) is a third-degree

polynomial with normal priors

on its parameters

Vanilla GP-BO

overlay with prediction

overlay with ‘ground truth’
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Hypothesis active learning: hypoAL
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Next step: active model selection

Total uncertainty
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Back to combinatorial libraries:
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Hypothesis selection for ferroelectric response

Model 1 (second order

Median uncertainty
w

=

phase transition):

Model 2 (first order
phase transition):
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Hypothesis Learning

= Can ML algorithm think like a scientist?

= Yes — automated experiment can pursue hypothesis-driven science!

Measurement

Scalarizer

SN

Parameter spac/

@
Next measurement

(Xq, wr X,)

Y. Liu, arxiv 2202.01089
Y. Liu, arxiv 2112.06649

N

Hypothesis learning

|
osteriors 1 lPriors

P
Hypotheses:
1. Model1l, p,
2. Model 2, p,
3. ..
4. Modeln, p,

Thermodynamic 1

Thermodynamic 2

Wall pinning

Charge injection

--------------
tttttttttttttt

Bulk pinning
centers (Model 3)

Thermodynamic limit
for diffuse charged
domain walls (Model 1)

Screening charge
injection and
transport (Model 4)

.

Pinning-limited
logarithmic
kinetics of
domain walls
(Model 3)

Thermodyhamic limit
for infinitely thin
domain walls (Model 2)

-
------

Model Equation
2/3
Model 1 r(V) =1 + 77 (VK) -1
3| /V 2
Model II r(V) =1y + 74 (_) 1
Ve
Model III r(V,t) =V%logt
Model IV r(V,t) = verf




Automated Experiment #3—Automated Hypo-learning
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Hypothesis learning in action

BEPFM Phase

Step 1, Random Write Parameters
Write Bias: -7.53V, Write Time: 0.2985S

Domain Size: 5.05

Model Selection

Model Use Times
= NN
] L ] Ln [} wn
i i i i i

Random write parameters,
no training performed

Domain size vs write bias and time

10

Model ID

Model Reward

1 2 3 4

1.0

0.5

Domain Size
Rewards

0.0

_'[].5 -

fog1nT

Random write parameters,
no training performed

10 20 30
Train S5tep

Y. Liu, arxiv 2202.01089
Y. Liu, arxiv 2112.06649

40

ML algorithm has 4 competing
hypothesis on domain switching
mechanisms

These hypothesis represent full set
of possibilities for this system

The microscope chooses
experimental parameters in such a
way as to establish which
hypothesis is correct fastest

Important: the same approach can
be implemented in synthesis and
electrical characterization

Machine learning meets hypothesis-
driven scientific discovery!



More then ML: Human in the Loop

Prior knowledge Experiment
Human

* Weights
* Inductive biases

. Select component
Select analysis pon~ :

method

>

Reward Function

Material Parameters

. DCNN|

2y

Discovery pathway depends on the reward structure!



The World is Bayesian: Physics from Observations

Hypothesis driven science: Forward mcidel: Theory

What we want to learn —
- P(Data ITheory)P(Theory)
P(Theory|Data)- P (Duta)

~—

« Experimentalists know the priors. Albeit they do not know that they know it, or how to
convert them to algorithmic form

Domain expertise:

High Performance
Computing

» However, how do we make guesses about the unknown?

Prior N\
Refinement: Posterior Hypothesis

Can be formation:
defined as Q HOW can we
do it?

probabilistic
model




Towards hypothesis learning

Random hypothesis
generation
(symbolic strings)

Prior knowledge:

- Data bases

- Literature mining
- Prior experiments

Physical
constraints

Data already exists: Eureka, SISSO, SinDY, etc.
What if we make hypothesis learning a part of active experiment?
Need policies for hypothesis generation

Physical models and
hard priors

Physical models, their
probability, & priors
over their parameters

Experiment




What if | want to do it myself?

AtomAl: comprehensive toolbox for DCNN-based
supervised exploration of STEM and SPM Data:

PyroVED: building structure-property correlations and
unsupervised and semi-supervised physical discovery

GPim: Gaussian processing toolbox for image analytics
and automated experiment

gpax: hypothesis-driven structured Gaussian Processes

PyCroscopy: General data formats, workflows, and
Image analytics

YouTube: M*N: Microscopy, Machine Learning, Materials
Medium: https://ziatdinovmax.medium.com/

Input data




State of microscopy now

ldeas

« Hypotheses

« Contacts from people

« Us reaching out “Qualitative” image you
can put in the paper

—

~_~

Materials: Imaging and Paper on how microscope
* Single crystals STEM spectroscopy works/technique advancement
 Films samples data

« Powders

g Theory-experiment comparison
based on "simple matching”

Questions:

* Where is the physics?
« Is this a fishing expedition?
* hypothesis driven science?




State of microscopy in the future

* |deas
Hypotheses

Contacts from people
Us reaching out

~_~

Materials:

Single crystals
Films
powders

)

Full cloud connection

Availability of the analysis workflow

STEM
samples

Imaging and
spectroscopy
data

Current status: ad-hoc local solutions/no scalability

Chicken and egg problem: just cloud connection and data
infrastructure is not enough if there is no way to analyze data

Feature
extraction

Quantification

Uncertainty
guantification

Structure
inversion

<~

Learning
physics

7

Vibronic and
electronic
physics




Classical Instrument research paradigm

SPM: 30,000+ platforms worldwide:

Large weakly connected instrumental network
(S)TEM: ~100s top level machines,

much stronger integrated community

ms min
—_— <:>
£ h
T
Instrument Control/data acquisition ~ Researcher @U

Community ™~
* Social networking/education
* Publications/citations

Only small fraction of data stream from the instrumentation is captured

Only small fraction of captured data is analyzed, interpreted, and put in the context

Human-machine interaction during acquisition is often slow and can be non-optimal

Human interpretation of data is limited: bias and ignoring serendipity

Information propagation and concept evolution in scientific community is slow and affected by non-scientific factors

uhwheE



Imaging in the Cloud

abkrwbhE

Multiple geographically-distributed data generation node

Full capture of instrumental data stream /compression/curation
Coordination of protocols and data/metadata across the cloud
Cloud-based processing and dimensionality reduction
Community-wide analytics



Opportunities: from single human expert to augmented

systems

Expert Control « Synthesis of

expertise: factor in
human expert
knowledge

Decision making .
v Automatic User
Expert System Model

Experimental data

I
o

<
'© [ £ =
S 001 ) r » Context search:

published results

o
14| et
-2.8] ‘7_..'}/ data mining/social

N —r— : networks
Bias (V)
Future:
* Automated analysis of routine data
* |dentification of anomalies
>

* Initial training of new practitioners
e Data centers: information based on knowledge Timeline

PFM Si




Beyond single tool: workflow design

Reward
Prior knowledge Value
Operator curiosityi
Traditional experiment: Value of the step is key element:
1. Always based on workflows « Either based on prior knowledge
2. ldeated, orchestrated, and implemented by humans * Or defined in a sense of the

3. The “gain of value” during the workflow implementation is uncertain reinforcement learning Q-function



Need: cloud infrastructure!-

Microscope control
« Fast data analytics
* On the fly feedback

Internal data infrastructure

« Full information capture

« Searchability and discoverability

« HPC assisted data analysis workflows

Tool sharing: open source
« PyCroscopy (data structures, image analysis)

* HyperSpy
e LieberSTEM

Data sharing
« CITRIN
« Materials Project



Cloud labs: facilities of the future

\.

o
. . i) el
g —~ AR~ -~

L N &

Emerald Cloud Lab,
SF and CMU

1. Combined human-machine workflow implementation
2. Computer orchestrating agent
3. How would beyond human workflows be ideated?



Key challenge: reward-based workflow design

1. Development of the labs capable of orchestrating predefined workflows based on human and robotic agents.

2. Workflow design based on Al and human decision making, meaning specific series of synthesis and
characterization steps described via executable hyperlanguage.

3. Defining domain-specific reward functions. Why are we running experiments? Ultimately, we need to
qguantify (in the style of Bell’s equation) what is the benefit of the specific step in the workflow, and how does it
accomplish or affects exploration and exploitation goals.

4. Integration of reward functions from dissimilar domains. For example, how does better microscope help us
learn physics of specific material? Why would the specific DFT calculation help us understand experimental
data?

5. Creating experimentally falsifiable hypothesis from the domain specific body of knowledge that can be
incorporated in the exploratory part of automated workflows.

6. Hypothesis generation beyond human. | suspect that this part gets close to AGl and is non-solvable in
general, since it is extrapolation/intuition. Makes it interesting for ML!



And technology ]

“New directions in science are launched by new tools much more often than by new
concepts. The effect of a concept-driven revolution is to explain old things in new ways.
The effect of a tool-driven revolution is to discover new things that have to be explained.”

Freeman Dyson

« Cloud connection and data infrastructure is necessary, but not enough
« Can we offer comprehensive workflow design, building, and optimization solutions?
« Potential to change way R&D is performed: academia, start-ups, industry



Concluding:

« Machine learning is great, but
o Requires domain expertise
o Ease of use for deployment
o Some ML knowledge

* Microscope is a laboratory:
o Engineering controls
o Algorithms
o Connection to domain expertise

Twitter: Sergei_imaging

Sergei V. Kalinin
sergei2@utk.edu

g

YouTube
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